Sep $27 / 2017$

Ex.

$$
\begin{aligned}
& \text { weight }=m g \\
& \text { work }=\underbrace{}_{\text {weight }} \text { mg }
\end{aligned}
$$

$$
\text { weight }=200 \mathrm{lb}
$$

$$
\begin{aligned}
& \text { (weight) } \\
& \text { density }
\end{aligned}=\frac{200}{100}=2 \mathrm{lb} / \mathrm{ft}
$$

$$
\text { Total work }=\int_{0}^{100} 2 x d x=\left.x^{2}\right|_{0} ^{100}=10000
$$

$P=$ weight density of water

$$
A(x)=\pi r^{2}=\pi\left(20^{2}-x^{2}\right)
$$

weight of the layer $=\rho A(x) \Delta x=\rho \pi\left(400-x^{2}\right) \Delta x$

Ex. (\#21 in 7.6)
Law of gravity

$$
\begin{align*}
F & =G \frac{m_{1} m_{2}}{d^{2}} \\
W & =\int F_{\text {once }} d x=\underbrace{m_{1}}_{a}=\underbrace{b}_{a} \underbrace{\frac{m_{1} m_{2}}{x^{2}} d x}_{a} \\
& =G m_{1} m_{2} \int_{a}^{b} \frac{1}{x^{2}} d x=G m_{1 m_{2}}\left(\frac{1}{a}-\frac{1}{b}\right) \tag{O}
\end{align*}
$$

Ex. Hydro static pressure
Force applied to surface of a dam by water (pressure).

$$
\} d=\text { depth }
$$

$$
P=\text { pressure }=\underbrace{\rho} d
$$

\xrightarrow{c} w weight density

length of red segment $=2 a+30=16-x+30=46-x$.

$$
\frac{a}{10}=\frac{16-x}{20} \leadsto a=\frac{1}{2}(16-x)=8-\frac{x}{2}
$$

Force of $=\underbrace{p x}_{\text {pressure }} \cdot \underbrace{(46-x) \Delta x}_{\text {area }}$
Total force $=\int_{0}^{16} p\left(46 x-x^{2}\right) d x$

Other applications: Finding center of mass \& moments.
7.7 Diff. equations \longrightarrow we will see later.
10.1 Review of 3D geometry.

