Sep 27 / 2017 h Ex. , cable weight = mg Work = mg)h 100 Ft weight = 200 lb $(weight) = 200 = 2 \frac{10}{51}$ density = 100 weight $= 2.\Delta x$ lb. work = $(2 \cdot \Delta X) \cdot X$ $\int 2x dx = x^2 \int \frac{100}{1000} = 10000$ (00 Total work 0 P = weight density of water 2054 10 ft }∆× $Y_{(x)} = \sqrt{20^2 - x^2}$ $A(x) = \pi r^2 = \pi (20^2 - x^2)$ weight of the layer - PALX) DX = PTI (400-X) DX

weight of = $\rho T1 (400 - x^2) \Delta x$ 10} langer 20 Total work = p TI (400-x²) X dX weight distance of layer 10 $\in x.$ (#21 in 7.6) Law of gravity work? $F = G \frac{m_1 m_2}{d^2}$ <u>ت --- ت</u> $W = \int Force \cdot dx$ $G = \frac{m_1 m_2}{\chi^2} dx$ $= G^{m_1m_2} \int_{x^2} dx$ $Gm_1m_2\left(\frac{1}{a}-\frac{1}{b}\right)$ Ex. Hydro static pressure Force applied to surface of a dam by water (pressure). d = depth P= pressure = pd

Review of 3D geometry. 10.1 そ × Х $(x_2 - x_1)^2 + (y_2 - y_1)^2$ ر (ر×ر، ۲)) (X_{2}, J_{2}) distance $d\left(\left(X_{1}, y_{1}, z_{1} \right), \left(X_{2}, y_{2}, z_{2} \right) \right) = \sqrt{ \left(X_{2} - X_{1} \right) + \left(y_{2} - y_{1} \right) + \left(z_{2} - z_{1} \right) }.$