Sep. 25/2017

Tomorrow's quiz: Sec. 7.2 & 7.3 (volumes)

Arc length:

$$(x, f(x)) \longrightarrow (1, f(x))$$

$$(x, f(x)) \longrightarrow (1, f(x))$$

0

Ex. (#17 Sec. 7.4)

$$y = ln(1-x^2)$$

$$0 \le X \le \frac{1}{2}$$

$$f'(x) = \frac{1}{1-x^2} \cdot (-2x).$$

 $f(x) = \ln(1 - x^2)$

1+(f(x))2)dx

> length of

Arc
$$length$$
 $\int \sqrt{1 + \left(\frac{-2x}{1-x^2}\right)^2} dx$

Ex (Circomference of an ellipse)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Write an integral that gives Circum of the ellipse.

$$2 \int 1 + y(x)^2 dx$$

$$x = -a$$

Alternatively, you can use implicit diff.

$$y' = \frac{1}{2\sqrt{b^2 - \frac{b^2x^2}{a^2}}} - 2x(\frac{b^2a^2}{a^2})$$

Circum of the ellipse

$$2 \int 1 + \frac{4x^2}{a^2} (\frac{b^2a^2}{a^2})^2 dx$$

ellipse

$$2 \int 1 + \frac{4x^2}{a^2} (\frac{b^2a^2}{a^2})^2 dx$$

(You can little bit simplify this expression).

It took conturies to finally prove that above integral can not be expressed in terms of "elementary function" e.g. sin, cos exp, In

Ramanujan found very	nice approx. for this
integral	^ . ^
(Movie: The man who	knew infinity).
. We skip. 7.5	Surface area.
·	
7.6 Applications in	physics.
General Principle:	
x, y two quantit	
<u> </u>	
Third quantity given b (when X & Y Constant).) xy (product).
(when X & Y Constant).	
Simple example:	y Area = X.y (of rectougle)
×	rectongle)
Now suppose X is v	aniable & y depends on x
•	(i.e Y=f(x))
Then:)
The third quantity =	f(x) dx
The third quantity = for values of x	
$a \leq x \leq b$ X:	<u>-</u> 0
	Time distance
	Force x distance
~	autiplication formula

When Fis variable say F(x), x distance to 0. (or position)

Work done by force F(x) from x=a to x=b is:

$$W = \int_{\alpha}^{\beta} F(x) dx$$

Examples we see in 7.6:

> work by force of gravity . Work " by force of a spring

- Pressure (hydrostatic pressure)
- Center of mass & momentum.

Ex. Hook's low

F = (R) x Hook's Const

Work done to

stretch the spring =

from X=0 to X=b

(const. K known)

 $\int_{-k}^{-k} dx$

Next time:

work needed to empty the pool?

