Sep. 25/2017

Tomorrow's quiz: Sec. 7.2 \& 7.3 (volumes)

Arc length:

$$
\int_{a}^{b} \underbrace{\sqrt{1+\left(f^{\prime}(x)\right)^{2}}} d x
$$

$$
(x, f(x)) \xrightarrow{\text { diff }}\left(1, f^{\prime}(x)\right) \quad\left(1, f^{\prime}(x)\right)
$$

Ex. (\#17 Sec. 7.4)

$$
y=\ln \left(1-x^{2}\right) \quad 0 \leqslant x \leqslant \frac{1}{2}
$$

Find the are length: $f(x)=\ln \left(1-x^{2}\right)$

Set up an integral that computes...

$$
f^{\prime}(x)=\frac{1}{1-x^{2}} \cdot(-2 x)
$$

$$
\begin{align*}
& \text { Arc } \\
& \text { length }
\end{align*}=\int_{0}^{\frac{1}{2}} \sqrt{1+\left(\frac{-2 x}{1-x^{2}}\right)^{2}} d x
$$

Ex (Circomference of an ellipse)

Write an integral that gives Cincum. of the

$$
\begin{aligned}
& 2 \int_{x=-a}^{a} \sqrt{1+y^{\prime}(x)^{2}} d x \\
& y=\sqrt{b^{2}-\frac{x^{2} b^{2}}{a^{2}}} \rightarrow \begin{array}{c}
\text { Altematinely, you can use implicit } \\
\text { diff. }
\end{array} \\
& y^{\prime}=\frac{1}{2 \sqrt{b^{2}-\frac{b^{2} x^{2}}{a^{2}}}} \cdot-2 x\left(b^{2} / a^{2}\right) . \\
& \begin{array}{c}
\text { Circum. Clips } \\
\text { of } \\
\text { ellipse }
\end{array}=2 \int_{-a}^{a} \sqrt{1+\frac{4 x^{2}\left(b^{2} / a^{2}\right)^{2}}{4 f\left(b^{2}-\frac{\left.b^{2} x^{2}\right)}{a^{2}}\right.}} d x
\end{aligned}
$$ ellipse.

(you can little bit simplify this expression).
. It took centuries to finally prove that above integral can not be expressed in terms of "elementary function" e.g. \sin , \cos \& poly nomials.

Ramanujan found very nice approx. for thin integral
(Movie: The man who knew infinity).

We skip. $7.5 \longrightarrow$ surface area.
7.6 Applications in physics.

General principle:
x, y two quantities
Third quantity given by $x y$ (product). (when $X \& Y$ constant).

Simple example:

$$
\begin{array}{|ll}
\hline \frac{P / 1,}{x} & \begin{array}{l}
\text { Area }=x \cdot y \\
\text { (of } \\
\text { rectangle })
\end{array}
\end{array}
$$

\longrightarrow Now suppose x is variable \& y depends on x (ie $y=f(x)$).
Then:
The third quantity $=\int_{x=a}^{b} f(x) d x$
for values of x
$a \leq x \leq b$
Ex. Work $W=$ force x distance multiplication formula

If
F Constant

then $W=F \cdot d$

- When F is variable say $F(x), x$ distance to 0 .
 (or position)

Work done by force $F(x)$

Examples we see in 7.6 :

- Work \longrightarrow work by force of gravity ir by force of a spring
Homer
- Pressure (hydrostatic pressure)
- Center of mass \& momentum.

Ex.
Hook's I aw

Work done to
stretch the spring
from $x=a$ to $x=b$
(cost. K known)

Next time:
work needed to empty the pool?

