Nov. $29 / 2017$

- Stewart Calc. online notes about diff. equ.

2nd order linear diff. equ.

$$
y(x)
$$

$\stackrel{\prime}{!} \longrightarrow$ variable
function we look for \rightarrow nd order

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=G(x)
$$

Homogenons equation:

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

Easy fact
Suppose $y_{1}(x)$ \& $y_{2}(x)$ are two solution of (*)
Then any linear combination $c_{1} y_{1}+c_{2} y_{2}$ (c_{1}, c_{2} Constants) is also a solution of (A).

Example homog. equ.

$$
\begin{aligned}
& \left.\begin{array}{r}
y(x)=\sin (x) \\
y_{2}(x)=\cos (x)
\end{array}\right\} \leadsto \begin{array}{r}
y(x)=c_{1} \sin (x)+c_{2} \cos (x) \\
\text { is also a solution. }
\end{array} \\
& \begin{array}{l}
y^{y}(x)=\sin (x)
\end{array} \\
& \left.y^{\prime \prime}(x)=-c_{1} \sin (x)-c_{2} \cos (x)\right) \cdot \begin{array}{l}
y^{\prime}(x)=\cos (x) \\
y^{\prime \prime}(x)=-\sin (x)
\end{array}
\end{aligned}
$$

Linearly independent solution: $y_{1}(x) \& y_{2}(x)$ solutions of $(*)$.
$y_{1} \& y_{2}$ are lin. ind. if they are not Constant multiple of eachother. That is, there is no c_{1} const. $C_{1} y_{1}(x)=y_{2}(x)$ on $\ldots c_{2} \cdots \cdots c_{2} y_{2}^{(x)}=y_{1}^{(n)}$.
Example $y^{\prime \prime}+y=0$
$y_{1}=\sin (x)$ \& $y_{2}=\operatorname{Cas}(x)$ are lin. ind.
But $\sin (x) \& 5 \sin (x)$ are lin. dependent.
(Harder) Fact: If $Y_{1}(x)$ \& $y_{2}(x)$ are two linear independent Sol. of :

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \tag{*}
\end{equation*}
$$

\& moreover $P(x)$ is never 0 , then: every Solution of (*) is of the form $c_{1} y_{1}+c_{2} y_{2}$ for Const. $c_{1} \cdot c_{2}$.

- Basically, if you know two lin. ind. sol. then you know all solution.

Now we talk Case of "Constant Coeff." and order lin. diff. equ: homos. homog.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

a, b, c cost.
Rem These Const. Coif. 2nd. ord. lin. diff. equ. have many features similar to 2 lin. equ. in linear alg.
Today's goal: Find solutions of this equ.
We guess that a sol. is of the form $y(x)=e^{r x}$. (r constr.)
We want to find r.

$$
\begin{aligned}
& \text { Ne want to } \quad y^{\prime}(x)=r e^{r x} \quad y^{\prime \prime}(x)=r^{2} e^{r x} \\
& y(x) \\
& a r^{2} e^{r x}+b r e^{r x}+c e^{r x}=0 \quad \text { equacteristic } \\
& \left(a r^{2}+b r+c\right) e^{r x}=0 \Leftrightarrow a r^{2}+b r+c=0
\end{aligned}
$$

Need to find roots of $a r^{2}+b r+c=0$ Quad. Formula

Ex. $\quad y^{\prime \prime}+y^{\prime}-6 y=0$.
Look for $r \quad y=e^{r x}$ is a sol.

$$
\left[\frac{r^{2}+r-6=0}{r_{1}=\frac{-1+\sqrt{1+24}}{2}}\right. \text { char. }
$$

$$
r_{2}=\frac{\frac{-1-\sqrt{1+24}}{2}}{=-3}
$$

Conclusion:

$$
c_{1} e_{-3 x}^{2 x}+c_{2} e^{-3 x}
$$

(Note $e^{2 x}$ \& $e^{-3 x}$ are lin. ind.)

$$
\begin{aligned}
& a y^{\prime \prime}+b y^{\prime}+c y=0 \\
& a r^{2}+b r+c=0
\end{aligned}
$$

Our equation
char. equ.
(1) Char. equ. has two real roots. (as in the) (i.e. $b^{2}-4 a c>0$) above
General sol.: $y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$ basic sol.
(2) Char. equ. has only one real root r.
(i.e. $\quad b^{2}-4 a c=0$)

General sol.: $y(x)=C_{1}$

Ex.

$$
\left\{\begin{array}{l}
4 y^{\prime \prime}+12 y^{\prime}+9 y=0 \\
4 r^{2}+12 r+9=0 \sim(2 r+3)^{2}=0 \\
\left.\frac{-12 \pm \frac{-3}{2}}{8}=0 \quad \begin{array}{l}
12^{2}-4.4 \cdot 9 \\
8
\end{array}\right) \frac{-12}{8}=\frac{-3}{2}
\end{array}\right.
$$

There is only one sol. $\quad\left(b^{2}-4 a c=0\right)$.
Basic sol.: $y_{1}(x)=e^{\frac{-3}{2} x} \quad y_{2}(x)=x e^{-\frac{3}{2} x}$
(Please as a boring exercise plug-in $y_{1} \& y_{2}$ in $4 y^{\prime \prime}+12 y^{\prime}+9 y$ \& see you get 0 .)
(3) Char. equ. has no real roots.

$$
\left(b^{2}-4 a c<0\right)
$$

of char. equ.
In this case suppose the roots are:

$$
\begin{array}{lc}
r_{1}=\alpha+i \beta & \begin{array}{c}
i=\sqrt{-1} \\
r_{2}=\alpha-i \beta
\end{array} \begin{array}{c}
\alpha, \beta \text { real } \\
\text { number }
\end{array}
\end{array} \begin{gathered}
\frac{-b}{2 a} \pm \\
\alpha \\
y(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\end{gathered}
$$

