Remark
About Taylor series/polynomials

$$
\begin{aligned}
& T_{n}(x)=f^{f(a)}+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

- Rem For calculus explorations \rightarrow Wolfram Alpha
we Continue with diff. equ.

Ser. 7.7 Last time: Separable diff. equ. (of first order)

$$
\begin{aligned}
& y^{\prime}=f(t) g(y) . \quad \text { only } y^{\prime} \text { appears } \\
& \frac{1}{g(y)} d y=f(t) d t
\end{aligned}
$$

\vdots integrate

$$
\int \frac{1}{g(y)} d y=\int f(t) d t
$$

\cdots solve for y in terms of t.

- Example Logistic diff. equ. / function.

$$
\frac{d y}{d t}=k y(M-y)
$$

$k \& M$ Constants

- First order

Linear diff. equ. \leadsto check textbook website.

- n-th order linear diff. equ.: (I use x as $\begin{aligned} & \text { variable }\end{aligned}$)

$$
\begin{aligned}
& \sum^{(n)}+\infty y^{(n-1)}+\cdots+\rho=0 \text {. } \\
& \text { may have } x \text { in it } \\
& x
\end{aligned}
$$

(functions of x)

- Linear diff. equ. with const. Corf.:

No x in the coeff.
Ex.

$$
3 y^{\prime \prime}+4 y^{\prime}+5 y+3=0
$$

In general, one uses linear alg., Matrices,... to Solve Lin. diff equ. with Cost. Clef.

Today me discuss: (non-const. Est order linear)

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

Ex. $y^{\prime}+\frac{1}{x} y=2$.

$$
\begin{aligned}
& \frac{x y^{\prime}+y}{(x y)^{\prime}}=2 x \\
& (x)
\end{aligned}
$$

\} Take anti-der.

$$
\begin{aligned}
& x y=\int 2 x d x=x^{2}+c \\
& y=\frac{x^{2}+c}{x}=x+\frac{c}{x}
\end{aligned}
$$

- This is example of Method of "integrating" (in this example multiplying by x).

$$
\begin{gathered}
y^{\prime}+P(x) y=Q(x) \quad I(x)=\begin{array}{c}
\text { integration } \\
\text { factor }
\end{array} \\
\frac{I(x)\left(y^{\prime}+P(x) y\right)}{\searrow}=I(x) Q(x)
\end{gathered}
$$

we want: $I(x)\left(y^{\prime}+P(x) y\right)=(I(x) y)^{\prime}$
(Find $I(x)$ such that this happens)

$$
I(x) y^{\prime}+P(x) I(x) y=I(x) y^{\prime}+I^{\prime}(x) y
$$

we want: $P(x) I(x)=I^{\prime}(x)$.

$$
\begin{aligned}
& I^{\prime}(x)=P(x) I(x) . \quad\binom{\text { we are boners }}{\text { for } I(x)} \\
& \int \frac{I^{\prime}}{I} d x=\int P d x \\
& \ln |I|=\int P d x \\
& I=A e^{\int P d x} \sim \begin{array}{l}
\text { This } I \text { works } \\
\text { as int. factor }
\end{array} \\
& \text { for } y^{\prime}+P y=Q .
\end{aligned}
$$

