Nor. $13 / 2017$
(1) Midterm 2 on wed.

No quiz on Tuesday
Representing functions as power series
Some basic power series:

$$
\begin{array}{ll}
& \frac{1}{1-x}=1+x+x^{2}+\ldots=\sum x^{n} \quad 0 \leqslant|x|<1 \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { For all } x
\end{array}
$$

Ex. Power series rep. of $\frac{1}{1+x}$

$$
\begin{aligned}
& \text { - } \frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n}(-x)^{n}=\sum_{n}^{1+x}(-1)^{n} x^{n}=1-x+x^{2}-x^{3} \cdots \\
& |-x|<1 \\
& \text { - } \frac{x^{3}}{1+x}=\sum_{n=0}^{\infty} x^{3} \cdot(-1)^{n} x^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n+3} \\
& |x|<1(>) \\
& \begin{array}{l}
\text { radius of } \\
\text { cons. }
\end{array} \\
& =+x^{3}-x^{4}+x^{5}-\cdots \cdot
\end{aligned}
$$

- $\frac{1}{(1-x)^{2}}$
(1) $\frac{1}{1-x} \cdot \frac{1}{1-x}=\left(1+x+x^{2}+\cdots\right)\left(1+x+x^{2}+\cdots\right)=$
(not the best way)

$$
\begin{aligned}
& =\left(\sum_{n} x^{n}\right)\left(\sum_{m} x^{m}\right) \\
& =\sum_{n, m=0} x^{n+m} \quad \begin{array}{l}
\text { rearrange } \\
\text { terms }
\end{array} \\
& =\sum_{i=0}^{\infty} \text { er as } \\
& =1+1) x^{i} \quad \begin{array}{l}
\text { a rite it as omer series }
\end{array} \\
& =1+2 x+3 x^{2}+4 x^{3}+\cdots
\end{aligned}
$$

(2) (better way)

$$
\begin{aligned}
\frac{1}{(1-x)^{2}}=\left(\frac{1}{1-x}\right)^{\prime} & =\left(\sum_{n} x^{n}\right)^{\prime} \\
& =\sum_{n=0}^{\infty}\left(x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n x^{n-1}
\end{aligned}
$$

(remember $\left(x^{0}\right)^{\prime}=1^{\prime}=0$.)

$$
\begin{aligned}
& \text { Ex. } \frac{1}{(1+x)^{3}}=\left(\frac{1}{-2(1+x)^{2}}\right)^{\prime} \rightarrow \int \frac{1}{(1+x)^{3}} d x=\frac{(1+x)^{-3+1}}{-3+1}+c \\
&=\left(\frac{1}{2(1+x)}\right)^{\prime \prime}=\frac{(1+x)^{-2}}{-2} \\
& \frac{1}{2(1+x)}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2} x^{n}\left(x^{n}\right)^{\prime \prime} \\
& \frac{1}{(1+x)^{3}}=\left(\frac{1}{2(1+x)}\right)^{\prime \prime}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{2} n(n-1) x^{n-2}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { Ex. } \frac{1}{1+3 x^{2}} & =\sum_{n=0}^{\infty}\left(-3 x^{2}\right)^{n} \\
\frac{1}{1-\left(-3 x^{2}\right)}{ }^{\prime} & 0 \leq\left|3 x^{2}\right|<1 \\
\sum_{n=0}^{\infty}(-3)^{n} x^{2 n} & 3|x|^{2}<1 \\
& 0 \leq|x|<\sqrt{\frac{1}{3}} \\
\text { radius }
\end{array}\right)
$$

radius.

$$
-\sqrt{\frac{1}{3}}<x^{3}<\sqrt{\frac{1}{3}}
$$

Some review problems
Para. Curves:

- Find (slope of) tangent line to a para. curve.
- Find angle between two para. curves.

Ex.

$$
\begin{aligned}
& r_{1}(t)=\left(t, t^{2}\right) \\
& r_{2}(t)=(\sin (t), \sin (2 t))
\end{aligned}
$$

At $t=0$ the two curves intersect.
Find angle between the curves at $t=0$.

$$
\begin{aligned}
& r_{1}^{\prime}(t)=(1,2 t) \stackrel{t=0}{\longrightarrow}(1,0) \\
& r_{2}^{\prime}(t)=(\cos (t), 2 \cos (2 t)) \underset{t=0}{\sim}(1,2) .
\end{aligned}
$$

So we wont angle between $\underbrace{(1,0)}_{v_{1}} \& \underbrace{(1,2)}_{v_{2}}$.

$$
\begin{aligned}
& \\
& \cos (\theta)=\frac{v_{1} \cdot v_{2}}{\left|v_{1}\right|\left|v_{2}\right|} \\
&=\frac{1}{1 \cdot \sqrt{5}} \\
& \theta=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right) .
\end{aligned}
$$

Ex. Consider the polar curve $r=3 \operatorname{cas} 4 \theta$.

$$
r=3 \operatorname{Cos} 4 \theta
$$

- Formula for area in polar Bor.

$$
A=\int_{\theta=a}^{b} \frac{1}{2} r(\theta)^{2}
$$

- Range of θ in one leaf.

Look at usual graph of $\operatorname{Cas}(4 \theta)$ \& see where $\operatorname{Cas}(4 \theta)$ goes from 0 \& comes back to 0 .

range of θ
for one leaf.

