Nov. $10 / 2017$
Coming wed. Nor- is midterm 2.
(Covers material after midterm 1).
\longrightarrow para. curves + polar dor. + seq. \& series.

- Taylor series/polynomial is on the test.
$f(x)$ given function $\leadsto f$ is many times differentiable. a point in the domain of f
$\left.(f(x), a) \sim \underset{\sim}{\text { power series }} \begin{array}{c}(\text { representation of } \\ \text { (Taylor series) }\end{array} \underset{\text { around } a}{\underline{a}}\right)$.
Approximating f by polynomials (of higher \& higher)
near a point a eyre near a point $\underline{\underline{a}}$.

Ex. $f(x)=\sin (x) \quad a=\frac{\pi}{4}$
(0) deg o poly. Constr. function $y=\sin \left(\frac{\pi}{4}\right)=\sqrt{2} / 2 . \leadsto$ best cost.
 approx.
(1) $\operatorname{deg} 1$ poly. linear function approx. (best)
Recall equ. of tangent line: $\frac{y-f(a)}{x-a}=f^{\prime}(a)$.

$$
\begin{aligned}
& y=f(a)+f^{\prime}(a)(x-a) \\
& y=\sin (\pi / 4)+\sin ^{\prime}(\pi / 4)\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right) .
\end{aligned}
$$

$\operatorname{deg} 2$
The best quad. approx. of f at point $\underline{\underline{a}}$ is:

$$
y=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}
$$

The best deg. n approx. of f at \underline{a} :
[(deg n Taylor poly. of f at a)

$$
y=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f_{(a)}^{(n)}}{n!}(x-a)^{n}=T_{n}(x)
$$

(For this you need $\left.f(a), f^{\prime}(a), \ldots, f^{(n)}(a)\right)$.
Theorem This polynomial (ie. Taylor poly.) is the "best" approx. of f around \underline{O} by a deg. n polynomial.

$$
\begin{aligned}
T_{n}(a) & =f(a) \\
T_{n}^{\prime \prime}(a) & =f^{\prime \prime}(a) \quad T_{n}^{\prime}(a)=f^{\prime}(a) \\
& \cdots-T_{n}^{(n)}(a)=f^{(n)}(a) .
\end{aligned}
$$

Ex. $n=2 \quad T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}$ $f \& \underline{a}$ given

$$
\begin{aligned}
& f \& \stackrel{a}{=} \text { given } T_{2}(a)=f(a) \\
& T_{2}^{\prime}(x)=f^{\prime}(a)+\frac{f^{\prime \prime}(a)}{\not x} \cdot x(x-a) \leadsto T_{2}^{\prime}(a)=f^{\prime}(a) . \\
& T_{2}^{\prime \prime}(x)=f^{\prime \prime}(a) \longrightarrow T_{2}^{\prime \prime}(a)=f^{\prime \prime}(a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. } f(x)=\sin (x) \quad \& \quad a=\pi / 4 \\
& \sin (\pi / 4)=\frac{\sqrt{2}}{2} \quad \sin ^{\prime}(\pi / 4)=\cos (\pi / 4)=\frac{\sqrt{2}}{2} \quad \sin ^{\prime \prime}\left(\frac{\pi}{4}\right)=-\sin (\pi)=-\frac{\sqrt{2}}{2} \cdots \\
& T_{2}(x)=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{4}\left(x-\frac{\pi}{4}\right)^{2}
\end{aligned}
$$

Taylor series (of f at $x=a$):

$$
\begin{aligned}
T(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

- Many times taking $a=0$ is more Convenient. (Maclaurin Series)

There are these possibilities
(1) $T(x)=f(x)$ for x
(2) … for x $(|x-a|<R)$ radius. of Conv.
(3) $T(x)=f(x)$ only at $x=a$

- Exnmples we deal with are (1) \& (2)

Ex. $^{f(x)}=e^{x}, \quad a=0$.
$f^{(n)}=e^{x} \quad$ for any $n>0$.

$$
f^{(n)}(0)=e^{0}=1
$$

Taylor series of $e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots$
at $a=0$

$$
T(x)^{\text {at }} a=0 \quad=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

One shoms $e^{x}=T(x)$ for all x.

About error of Taylor poly. approx.
$T_{n}(x)=\operatorname{dey} n$ Taylor poly. of f at $x=a$.

$$
R_{n}(x)=f(x)-T_{n}(x)
$$

error of approx.
Theorem $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-a)^{n+1}$ for some z between $x \& a$.

Using this ore can show in many cases that $R_{n}(x) \longrightarrow 0$ as $n \longrightarrow \infty$.
Rem This theorem follows from Mean Value Th.
Ex. $f(x)=e^{x} \quad$ and $\quad a=0 . \quad 0<z<x$
Fix some $x \cdot \frac{f^{(n+1)}(z)}{(n+1)!} x^{n+1}=\frac{e^{z}}{(n+1)!} x^{n+1} \leqslant \frac{e^{x} \cdot x^{n+1}}{(n+1)!}$
$\underset{n \rightarrow \infty}{x \text { fixed then } \frac{e^{x} x^{n+1}}{(n+1)!} \rightarrow 0 \quad \text { So } \quad R_{n}(x) \rightarrow 0 .} \begin{aligned} & \text { as } n \rightarrow \infty\end{aligned}$

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

Ex. Taylor series of $f(x)=\sin (x), a=0$.

$$
\begin{aligned}
& \sin (x) \quad \sin ^{\prime}(x)=\cos (x) \quad \sin ^{\prime \prime}(x)=-\sin (x) \quad \sin ^{\prime \prime \prime}(x)=-\operatorname{Cos}(x) \\
& \sin ^{(4)}(x)=\sin (x)
\end{aligned}
$$

$$
\operatorname{Sin}(x)=T(x)=0+x+\frac{0}{3} x^{2}+(-1) \frac{x^{3}}{3!}
$$

(Shown using $\begin{aligned} & \text { error estimate theorem) }\end{aligned}$

$$
=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

