Dec. 4/2017 Last meete of classes miles . Final exan: next Tuesday (next week) No quiz tomoron! Check webpage for final into & Sample final. . (The sample final problems non in the webpage is outdated & contains topics we did not disense.) Non-homog- 2nd ord. lin. diff. equ. (with Const. Coeff.): ay'' + by' + cy = G(x) $\underline{E_{x}} \qquad y'' + y' - 2y = (x^2) + 6(x)$ () Solve the homog. equ. y'' + y' - 2y = 0find all sol. y(x)Tind one sol $y_p(x)$ of y''+y'-2y = x. $\frac{1}{(r-1)(r+2)} \xrightarrow{-2x} r=1 & r=2.$ (quad. formula) $(r-1)(r+2) \xrightarrow{-2x} general sol. fo$ $Y_{c}(x) = C_{1} e^{x} + c_{2} e^{x} \xrightarrow{-2x} fhe homog. equ.$

2 (Method of undetermined coeff.) IF G(x) is a poly. of deg. n. then y(x) can be taken to be a poly. of deg. n. Determine Coeff. of this poly. So it satisfies the diff. $G(x) = x^2 \longrightarrow y(x) = Ax^2 + Bx + C \longrightarrow Find A, B, C$ $y'_{p}(x) = 2A x + B$ $y'_{p}(x) = 2A$ $y''_+ y'_- 2y = x^2 \longrightarrow (2A + 2Ax+B - 2(Ax^2+Bx+C))^2$ We need to find A, B, C such that _________ for all x. $(-2A) \times^{2} + (2A - 2B) \times + (2A + B - 2C) = \times^{2}$ $-2A = 1 \longrightarrow A = -\frac{1}{2}$ $2A - 2B = 0 \longrightarrow -1 - 2B = 0 \longrightarrow B = -\frac{1}{2}$ $2A + B - 2C = 0 \longrightarrow -1 - \frac{1}{2} = 2C \longrightarrow C = -\frac{3}{4}$ $Y_p(x) = (-\frac{1}{2})x^2 + (-\frac{1}{2})x + (-\frac{3}{4})$ is a "particular" sol. The general sol. $Y(x) = (\frac{-1}{2})x^2 + (\frac{-1}{2})x + (\frac{-3}{4}) + q e + c_2 e$. y_p y_c

other examples are variations of this: 5x $E_{x.}$ $y'' + 4y = e^{-x}$ 5x G(x) = e ~~ yp is of the form 5x Ae 5x (need to find A). 5x 5x 5x 5x 5x 5x 5x 5x 2SA + 4A = 1 $A = \frac{1}{29} \longrightarrow 7_{p}(x) = \frac{e^{5x}}{29}$ $r_{+}^{2} = 0$ $r = \pm \sqrt{-4} = \pm 2i \quad (i=\sqrt{-1})$ $\alpha = 0$, $\beta = 2$ $Y_{c}(x) = C_{1} Cas(2x) + C_{2} Sin(2x)$ General sol. $\gamma(x) = \frac{e^{5x}}{29} + C_1 C_{a,s}(2x) + C_2 Sin(2x).$ • $G(x) = Can(3x) \longrightarrow Y_p(x) = A Can(3x) + B Sin(3x)$ $G(x) = x e^{2x} \longrightarrow Y_{p}(x) = (Ax^{2}+Bx+C)e^{x}$ $G(x) = x e^{2x} \longrightarrow \mathcal{I}_p(x) = (Ax+B) e^{2x}$ • $G(x) = \frac{2}{4} \sin(x) \longrightarrow y_p(x) = (Ax^2 + Bx + C) +$ DGn(x) + Esin(x).

Ex. $y'' + 2y' + 4y = x Car(3x) \leftarrow$ $Y_{p}(x) = (Ax + B) Con(3x) + (Cx + D) Sin(3x).$ Find Yp & Yp & plug-in the equ. ____ to find A, B, C, D.