Dec. $4 / 2017$ Last meek of classes 0° init $_{0}^{0}$

- Final exam: next Tuesday (next weak)
- No quiz tomorrow!
- Check webpage for final info \& sample final.
. (The sample final problems now in the webpage is outdated \& contains topics we did not discuss.)

Non-homog. and ord. lin. diff. equ. (with const. Coeff):

$$
a y^{\prime \prime}+b y^{\prime}+c y=G(x)
$$

Ex. $y^{\prime \prime}+y^{\prime}-2 y=x^{2} G G(x)$
(1) Solve the homog. equ. $y^{\prime \prime}+y^{\prime}-2 y=0$ Find all sol. $y_{c}(x)$
(2) Find one sol $y_{p}(x)$ of $y^{\prime \prime}+y^{\prime}-2 y=x^{2}$.
(1)

$$
\begin{aligned}
& r^{2}+r-2=0 \\
& (r-1)(r+2)
\end{aligned} \rightarrow \begin{gathered}
r=1 \quad \& \quad{ }^{r=}-2 . \\
\text { (quad. formula) }
\end{gathered}
$$

$$
y_{c}(x)=c_{1} e^{x}+c_{2} e^{-2 x} \sim \text { general sol. to. }
$$

(2) (Method of undetermined coeff.)

- If $G(x)$ is a poly. of deg. n then $y(x)$ can be taken to be a poly. of deg. n.
Determine coeff. of this poly. So it satisfies the diff. equ.

$$
\begin{aligned}
& G(x)=x^{2} \leadsto y_{p}(x)=A x^{2}+B x+C \leadsto \text { Find } A, B, C \\
& y_{p}^{\prime}(x)=2 A x+B \\
& y_{p}^{\prime \prime}(x)=2 A \\
& y^{\prime \prime}+y^{\prime}-2 y=x^{2} \leadsto 2 A+2 A x+B-2\left(A x^{2}+B x+C\right) \\
& \leadsto 2
\end{aligned}
$$

we need to find A, B, C such that for all x.

$$
\begin{aligned}
& \underbrace{(-2 A)}_{1} x^{2}+\frac{(2 A-2 B)}{0} x+\underbrace{(2 A+B-2 C)}_{0}=x^{2} \\
& -2 A=1 \leadsto A=-\frac{1}{2} . \\
& 2 A-2 B=0 \leadsto-1-2 B=0 \rightarrow B=-\frac{1}{2} . \\
& 2 A+B-2 C=0 \rightarrow-1-\frac{1}{2}=2 C \rightarrow C=-\frac{3}{4} . \\
& y_{p}(x)=\left(-\frac{1}{2}\right) x^{2}+\left(-\frac{1}{2}\right) x+\left(-\frac{3}{4}\right) \quad \text { is a "particular" sol. }
\end{aligned}
$$

other examples are variations of this:
Ex. $y^{\prime \prime}+4 y=e^{5 x}$
$G(x)=e^{5 x} \leadsto y_{p}$ is of the form

$$
A e^{5 x}
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{c}
y_{p}^{\prime}=5 A e^{5 x} \\
y_{p}^{\prime \prime}=5^{2} A e^{5 x}
\end{array}\right\} \begin{array}{c}
(\text { need to find } A) . \\
25 A e^{5 x}+4 A e^{5 x}=e^{5 x} \\
25 A+4 A=1 \\
A=\frac{1}{29} \rightarrow y_{p}(x)=\frac{e^{5 x}}{29} \\
r^{2}+4=0
\end{array}\right] \quad r= \pm \sqrt{-4}= \pm 2 i \cdot i=\sqrt{-1} \\
& \quad \alpha=0, \beta=2
\end{aligned}
$$

General sol. $y(x)=\frac{e^{5 x}}{29}+c_{1} \cos (2 x)+c_{2} \sin (2 x)$.

$$
\begin{aligned}
& \cdot G(x)=\operatorname{Cos}(3 x) \\
& \cdot G(x)=x^{2} e^{x} \leadsto y_{p}(x)=A \operatorname{Cos}(3 x)+B \sin (3 x) \\
& G(x)=x e^{2 x} \longrightarrow y_{p}(x)=\left(A x^{2}+B x+C\right) e^{x} \\
& \cdot G(x)=x^{2}+\sin (x) \longrightarrow y_{p}(x)=(A x+B) e^{2 x} \\
& \cdot y_{p}(x)=\left(A x^{2}+B x+C\right)+ \\
& D \cos (x)+E \sin (x) \cdot
\end{aligned}
$$

$$
\text { Ex. } y^{\prime \prime}+2 y^{\prime}+4 y=x \operatorname{Cos}(3 x)
$$

$$
y_{p}(x)=(A x+B) \cos (3 x)+(C x+D) \sin (3 x)
$$

Find $y_{p}^{\prime} \& y_{p}^{\prime \prime}$ \& plug-in the equ. to find A, B, C, D.

