Dec. 1/2017
Examples of Case (3) Char. equ. has no real roots

Ex. $\quad y^{\prime \prime}+4 y=0$

$$
\begin{gathered}
r^{2}+4=0 \\
\} \\
r^{2}=-4 \\
r_{1}=\alpha+i \beta \\
r_{2}=\alpha-i \beta
\end{gathered}
$$

$$
\begin{aligned}
& r^{2}=-4 \quad r= \pm \sqrt{-4}=+\frac{2 i}{r_{1}}, \frac{-2 i}{r_{2}} \quad i=\sqrt{-1} . \\
& r_{1}=\alpha+i \beta \leadsto \alpha=0 \quad \beta=2
\end{aligned}
$$

$$
r_{1}=\alpha+i \beta \leadsto \alpha=0 \quad \beta=2
$$

General solution: $y(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)$

$$
=c_{1} \frac{\cos (2 x)}{y_{1}(x)}+c_{2} \frac{\sin (2 x)}{y_{2}(x)} \text {. }
$$

Ex. $y^{\prime \prime}+6 y+13 y=0$

$$
\begin{gathered}
r^{2}-6 r+13=0 \\
\frac{6 \pm \sqrt{36-4 \times 13}}{2}=\frac{6 \pm \sqrt{-16}}{2} \\
\left.=\frac{6}{2} \pm \frac{\sqrt{16}}{2} i=(3) \pm 2\right) i \\
y(x)=e^{3 x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\end{gathered}
$$

this term comr. to a spring" with "damping".
(For interested)
Rem

$$
\left.\begin{array}{r}
\text { red) } \\
\alpha+i \beta
\end{array} \quad e^{(\alpha+i \beta)}=e^{\alpha} \cdot e^{i \beta}\right\}
$$

(Lots of trig. formulas can be).
recovered from ((t)
and ord. lin. diff. equ. $a y^{\prime \prime}+b y^{\prime}+c y=0$
Homos.
with initial conditions.
Ex. $\quad y^{\prime \prime}+y^{\prime}-6 y=0$
Find sol. $y(x)$ of the diff. eq. with

$$
\underbrace{y(0)=1 \& y^{\prime}(0)=0} . \quad\binom{\text { initial value }}{\text { problem }}
$$

two initial condition

$$
\begin{aligned}
& r^{2}+r-6=0 \sim r=2,-3 \\
& y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x} \leadsto \frac{3}{5} e^{2 x}+\frac{2}{5} e^{-3 x}=y(x)
\end{aligned}
$$

Need to find c_{1}, c_{2} such that:

$$
\begin{aligned}
& c_{1} e^{0}+c_{2} e^{0}=c_{1}+c_{2}=1 \\
& 2 c_{1} e^{0}+(-3) c_{2} e^{0}=2 c_{1}-3 c_{2}=0 . \quad\left(y^{\prime}(x)=2 c_{1} e^{2 x}+(-3) c_{2} e^{-3 x}\right) \\
& 2 \text { qu. \& } 2 \text { unknowns } \underset{c_{1}, c_{2}}{\sim} \leadsto \begin{array}{l}
c_{2}=\frac{2}{3} c_{1} \\
c_{1}+\frac{2}{3} c_{1}=1
\end{array} \leadsto c_{1}=\frac{3}{5}, c_{2}=\frac{2}{5}
\end{aligned}
$$

Another variation of this:

Boundary value problem

Find sol. y such that $y(0)=1$ and $y(2)=5$ $y(x)=c_{1} e^{2 x}+c_{2} e^{-3 x}$

$$
\begin{aligned}
& y(0)=1 \leadsto c_{1}+c_{2}=1 \\
& y(2)=5 \leadsto c_{1} e^{4}+c_{2} e^{-\frac{3}{2}}=5
\end{aligned}
$$

Solve to find c_{1}, c_{2}

Next topic is non-homog. 2nd ord. lin. diff.
(*) $a y^{\prime \prime}+b y^{\prime}+c y=G(x) \leadsto$ some function Methods to find sol. : of x.

- Undetermined coeff. \rightarrow We will discuss.
$\left(\begin{array}{r}\left.\text { Variation of para. } \leadsto \begin{array}{c}\text { Don't need to know } \\ \text { for this course }\end{array}\right) \\ \\ \text { for })\end{array}\right.$

Fact: To find general sol. of equ. ($s-8$) We need to find only one sol of it (called "particular sol." y_{p}) \& all sol. of homog. $a y^{\prime \prime}+b y^{\prime}+c y=0$
"Complementary" Sol.

That is, general sol. $y(x)$ of:

$$
a y^{\prime \prime}+b y^{\prime}+c y=G(x)
$$

is of the form $y(x)=y_{p}(x)+y_{c}(x)$.

$$
a y^{\prime \prime}+b y^{\prime}+c y=G(x) \quad a y^{\prime \prime}+b y^{\prime}+c y=0
$$

