April 15 Zoom

- Next week: MW overview of def. of abs. variety \& Proj of a graded (Projective version of spec. of a fg . alg.)
- Final: Thursday \& Friday takehome exam (hand in by email)

HWY
Problem $1 \quad C=\left\{x^{6}+y^{6}-x y=0\right\} \subset \mathbb{A}^{2}$

- $\quad \frac{\partial f}{\partial x}(0,0)=0 \quad \frac{\partial f}{\partial y}(0,0)=0$
$(0,0)$ sing. pt. $\Rightarrow C$ sing. variety
(1)

If $C$ normal $\Rightarrow k[C]$ is int. cloned
$\Rightarrow O_{C, p}$ is int. classed $\Rightarrow \bigcup_{c, p}=1$

$$
P=(0,0)
$$

$O_{c, p}$ is reg. local
$\Rightarrow P$ is non-sing Contradiction
So $C$ not normal.

$$
P=(0,0)
$$

(2) If $m_{p}$ principal $\Longrightarrow C_{C, p}$ is regular.
(3) Compare with Ex. 4.9 .1 in Hartshorne

$$
\tilde{C}=\frac{y^{2}=x^{2}(x+1)}{\phi^{-1}(C \backslash 0)} \quad \phi: B l_{0}\left(\mathbb{L}^{2}\right) \rightarrow \mathbb{I}^{2}
$$

Manically points in $\tilde{C}$ which lie over 0 are $(0,[l])$ s.t. $l$ is a tangent $o \in \ell \quad$ line to $C$ at 0 ( $l$ belongs to tangent) cone of $C$ at 0

$$
f=x^{6}+y^{6}-x y=0
$$

Equ. of $C$
$\sim$ Equ. of tangent
Cone at ㅇ is :

$$
x y=0
$$

( degree $2=$ lopes $)$ dey. part of $f$ )

Problem 2 Showing Completion of $(p t=(0,1))$ local ring of $k[x, y] /\left(x^{3}+y^{2}-1\right)$ at max ideal $(x, y-1)$

$$
m_{p}=(x, y-1)
$$

you can me def.

$$
A=\left(\frac{k[x, y]}{\left(x^{2}+y^{2}-1\right)}\right) m_{p}
$$

$$
\hat{A}_{I}:=\lim _{\leftarrow} A / I^{n}
$$

$$
I=m_{p}
$$

to show $\hat{A}_{I} \cong k[[t]]$.
One also can use the general fact that: $A=R / J \leadsto \hat{A}=\hat{R} / \hat{J}$

$$
\hat{J}=\text { ideal in } \widehat{R} \text { gen. }
$$

For simplicity $u=y-1$ by $J \subset R$

$$
\begin{gathered}
A=(k+1=y \\
\left.\left.\hat{A}=(x, u] / x^{2}+(u+1)^{2}-1\right)\right) \\
\hat{A}=k[(x, u) \\
\left.\rightarrow x^{2}=1-(u, u]\right)^{2} \text { has a sol. } x= \pm \text { power series } \\
\left(x^{2}+(u+1)^{2}-1\right)
\end{gathered}
$$

proof of BKK Cont'd
Let $R(A)=k\left[1, x_{t}^{\alpha_{0}}, \ldots, x^{\alpha_{N}} t\right] C$
Consider a homo ism $k\left[z_{0}, \ldots, z_{N}\right] \xrightarrow{\Psi} R(A)$ graded $k$-alg.

deg $m$ part of $R(A)=$
$\{$ lin. combs of $\underbrace{\left(x^{\alpha_{0}} t\right)^{m_{0}} \cdots\left(x^{\alpha_{N}} t\right)^{m_{N}} N} \mid$

$$
\begin{aligned}
& \left.\begin{array}{c} 
\\
m_{0}, \ldots, m_{N} \geqslant 0 \\
m_{0}+\cdots+m_{N}=m
\end{array}\right\} \\
& \text { Recall: } \\
& \left.\begin{array}{l}
A+B:= \\
\{\alpha+\beta \mid \\
\alpha \in \mathcal{A} \in \mathcal{A} \\
\beta
\end{array}\right\}
\end{aligned}
$$

$$
\{x^{\alpha} \mid \alpha \in m * A:=\underbrace{A+\cdots+A}_{\text {times }}\}
$$

conclusion: $\operatorname{din}_{k} R(A)_{m}=|m * A|$.

But $k\left[X_{A}\right] \stackrel{C}{\cong} R\left(\mathcal{A}^{\prime}\right)$
So $\quad H_{X_{A}}(m)=|m * A|$
(recall $H_{X}(m):=\operatorname{dim}_{k} k[X]_{m}$ )

$$
x \hookrightarrow \mathbb{P}^{N}
$$

any pros. war.

Recall Hilbert's the:

$$
X \subset \mathbb{P}^{N}
$$

(1) $\exists P_{x}$ poly. st. $\quad H_{x}(m)=P_{x}(m)$ $m \gg 0$
(2) $\operatorname{deg} P_{x}=\tilde{\operatorname{din}}^{r} X$ (as variety)
(3) $P_{x}(m)=a_{r} m^{r}+10$ er terms
then $\operatorname{deg}\left(x \hookrightarrow \mathbb{P}^{N}\right)=r!a_{r}$
Combinatorial problem:
Fix a finite suluet $A \subset \mathbb{Z}^{n}$
show for $m \gg 0|m * A|$ is a poly. in $m$.

Hilbert function
proof $|m * A|=H_{X_{A}}(m) \quad \forall m \in \mathbb{N}$
Then use Hilbert's the.

Next Comb problem:
Suppose $\Delta=\operatorname{conv}(\mathcal{A})$
\& $D \in A$
\& $A$ generates $\mathbb{Z}^{n}$

$$
\begin{aligned}
& |m * A| \approx \underbrace{V_{0}(\Delta)} m^{n} \sim \underbrace{\text { sumac }}_{\text {Riemann }} \\
& \text { usual Lebesgue var for }
\end{aligned}
$$

The proof is by showing: measure

$$
\begin{aligned}
& {\left[\begin{array}{rl}
|m * A| & \approx \mid \\
& \underbrace{}_{\text {lattice }} \begin{array}{rl}
\text { Eh } r \mid \\
\text { Note: } \Delta A & \subset \Delta \cap \mathbb{Z}^{n} \text { of } \\
m * A \subset m \Delta n \mathbb{Z}^{n}
\end{array}
\end{array}\right.} \\
& |m * A| \leqslant\left|m \Delta n \mathbb{Z}^{n}\right|
\end{aligned}
$$

proof is elementary (ask me for a)

Putting every thing together:

$$
\operatorname{deg}\left(X_{A}\right)=r!a_{r} \rightarrow \text { leading coeff. }
$$

$$
\text { of } P_{X_{A}}(m)=|m * A|
$$

If $\begin{aligned} & 0 \in A \\ & A \text { gen } \cdot \mathbb{Z}^{n}\end{aligned} \longrightarrow \Phi_{A}:(k \backslash 0)^{n} \longrightarrow \mathbb{P}^{N}$
in ore-to-one \& hence $\operatorname{din} X_{A}=n$
So $\operatorname{deg} X_{A}=n!\operatorname{vol}_{n}(\Delta)$.
Finally, $\operatorname{deg} X_{A}=\left|\operatorname{Im} \Phi_{A} \cap L_{\}}\right|$
because Imp $D_{A}$ contains generic an open set plane of codir $n$
\& RHS by def. is $\underbrace{\left[\mathcal{L}_{A}, \ldots, \mathcal{L}_{A}\right]}_{\text {\# of sol. of }}$
of a generic system from $\mathcal{L}_{A}$

