April 13 Zoom
Bach to BKK thm.

$$
\begin{array}{ll}
A & =\left\{\alpha_{0}, \ldots, \alpha_{N}\right\} \subset \mathbb{Z}^{n} \\
\mathcal{L}_{A} & =\left\{f=\sum_{\alpha \in A} c_{\alpha} x^{\alpha} \mid c_{\alpha} \in k\right\} \subset
\end{array}
$$

Ex. $n=2 \quad(x, y)$ variables

$$
\begin{array}{r}
A=\{(0,0),(2,1),(3,1)\} \\
\operatorname{conv}(A)=\text { triangle }
\end{array}
$$

$$
\mathcal{L}_{A}=\left\{\xi+\infty x^{2} y+0 x^{3} y\right\}
$$

genencally
BKK thm: Pick $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in k$
\# $(x, y) \in(k \backslash 0)^{2}$ s.t.
i.e. $x \neq 0$ \& $y \neq 0$

$$
\left\{\begin{array}{l}
a_{1}+a_{2} x^{2} y+a_{3} x^{3} y=0 \\
b_{1}+b_{2} x^{2} y+b_{3} x^{3} y=0
\end{array}\right.
$$

is $2!$ Area $(\operatorname{conv}(A))=2!\frac{1}{2}=1$.
not spanned by monomials
Aside (\# of sol. of arbitrary systems)
X any variety

$$
n=\operatorname{din} X
$$

$k(X)$ field of rat. functions
Fix $\mathcal{L} \subset k(X)$ finite di- k-ven. subspace

Then:
The
\qquad (K. - Khovanskii, 2010) Theory of Okomhov bodies
(1)

$$
\begin{aligned}
& \exists V \subset X \quad \exists U \subset \mathcal{L} x \ldots x \mathcal{L} \\
& \left(f_{1}, \ldots, f_{n}\right) \in U \quad\binom{\text { generic system }}{\text { from }} \\
& \left|\left\{x \in V \quad f_{1}(x)=\cdots=f_{n}(x)=0\right\}\right|
\end{aligned}
$$

is ind. of $\left(f, \ldots, f_{n}\right)$.
(2) This (\# of sol. of a generic system from \mathcal{L}) is equal to $n!\operatorname{vol}_{n}(\Delta)$.

Convex + Compact
Convex body
Con

Rem \# of sol. of a generic system is finite p cost. (ind. of choice of system) is an algebraic effect (not true in real or Complex
analysis
Ex. $k=\mathbb{R} \quad \sin (x)+1=0 \quad \infty \quad \operatorname{man} y$ sol.

$$
\sin (x)+2=0 \text { no sol. }
$$

$k=\mathbb{\Phi} e^{x}=2 \leadsto \infty$ many sol.

$$
\begin{aligned}
& x \leadsto x+2 k \pi i \\
& \text { sol. } \\
& k \in \mathbb{Z} \\
& \text { sol. }
\end{aligned}
$$

A notation: $A \subset \mathbb{Z}^{n}$ finite suluet

$$
\begin{array}{r}
\left.\left[\mathcal{L}_{A}, \ldots, \mathcal{L}_{A}\right]=\begin{array}{l}
\text { \# of sol. of } a \\
\text { gen. system } \\
f_{1}(x)=\cdots=f_{n}(x)=0
\end{array}\right)
\end{array}
$$

we mould like to realize $\left[\mathcal{L}_{A} \cdots \cdots \mathcal{L}_{4}\right]$ as dey. of some proj. variety $X_{A} \subset \mathbb{P}^{N}$

$$
|A|=N+1
$$

$$
\begin{gathered}
x=\left(x, \ldots, x_{n}\right) \longmapsto\left(x^{\alpha_{0}}: \ldots: x^{\alpha_{N}}\right) \\
(k \backslash 0)^{n} \xrightarrow[\Phi_{A}]{ } \mathbb{P}^{N}
\end{gathered}
$$

Ex. $\quad A=\{(0,0),(2,1),(3,1)\}$

$$
\begin{aligned}
& (k \backslash 0)^{2} \longrightarrow \mathbb{P}^{2} \\
& (x, y) \longmapsto\left(1: x^{2} y: x^{3} y\right)
\end{aligned}
$$

Let $X_{A}:=$ closure of image of Φ_{A} in \mathbb{P}^{N}
$\left(\operatorname{Im}\left(\Phi_{A}\right)\right.$ not closed in $\left.\mathbb{P}^{N}\right)$
eeg. $(0: 0: 1) \in X_{A}$ but $\notin \operatorname{Im}\left(\Phi_{A}\right)$

$$
\begin{aligned}
& x=y \rightarrow \infty \quad \begin{aligned}
& \left(1: x^{2} y: x^{3} y\right) \xlongequal{\longrightarrow} \text { dive by } x^{4} \\
& \left(\frac{1}{x^{4}}: \frac{1}{x}: 1\right) \xrightarrow[x \rightarrow 0]{ }(0: 0: 1)
\end{aligned} \\
& x=y \rightarrow 0 \quad(1: 0: 0)
\end{aligned}
$$

I think in this ex. Φ_{A} is injective \&

$$
x_{A}=\mathbb{P}^{2}
$$

Closure of
Rem (General statement about image of a morphism)

$$
\Phi: X \longrightarrow Y \text { dominant } \begin{gathered}
\text { amorphism i.e. }
\end{gathered}
$$

$\left(\begin{array}{c}\text { Hopefully I prove next } \\ \text { time }\end{array}\right.$ 玉(X) den
The \& it is a Cor. of Noether normalization
Ir Φ Contains a non-empty open subset of Y.

In previous situation:

$$
\Phi_{A}: \underbrace{T=(k \backslash 0)^{n}}_{\begin{array}{c}
\text { algebraic } \\
\text { tonus }
\end{array}} \rightarrow \underbrace{X_{A}}_{\substack{\text { proj. Subvar. } \\
\text { of } \mathbb{P}^{N}}} \subset \mathbb{P}^{N}
$$

$\operatorname{Im}\left(\Phi_{4}\right)$ Contains an open subset of $X_{A_{A}}$.
(Tonic variety)
Def. X_{A} is a proj. toric variety. (ass. to the finite of lattice pts $A \subset \mathbb{Z}^{n}$).
we would like to describe $k\left[X_{A}\right]$ \& $\operatorname{deg}\left(X_{A}\right)$.
keeps track of
Tho
(i)

$$
k\left[X_{A}\right] \cong \text { subalg. of }
$$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { k-abalg. of } & \left.k\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}, t\right)\right] \\
\text { as }{ }^{2} \text { graded } \\
k \text {-alg. } & =\bigoplus_{m \geqslant 0} k\left[\left[_{1}^{ \pm}-x_{n}^{ \pm}\right] t^{m}\right. \\
\text { allen. 1 } & \alpha_{0}
\end{array}
\end{array}
$$

gen. by

$$
\sum_{\operatorname{deg}=0}^{1} \& \underbrace{\substack{m \geqslant 0 \\ \alpha_{0} \\ x^{\alpha}, \ldots, x^{N} t}}_{\operatorname{deg}^{\alpha} 1}
$$

(ii) $\operatorname{deg}\left(X_{A}\right)=\left[L_{A}, \ldots, L_{A}\right]$

$$
h\left[x_{1}^{ \pm}--x_{n}^{ \pm}, t\right]
$$

proof of (i)
Let $R(A)=k\left[1, x^{\alpha_{0}}, \ldots, x^{\alpha} N_{t}\right] C$
Consider nomolism $k\left[z_{0}, \ldots, z_{N}\right] \xrightarrow{\psi} R(A)$ graded k-alg.
$z_{i} \stackrel{\psi}{\longleftrightarrow} x^{\alpha_{i}} t$
ψ is clearly
$1 \stackrel{\psi}{\longmapsto} 1$
surjective \& preserves grading

Let's show ger $\psi \quad$ is $I=I\left(X_{A}\right)$.
Then we get iso. $k\left[X_{A}\right]:=k\left[z_{0}, \cdots, z_{N}\right]$ $\cong R(A)$.
$\rightarrow f=\beta$ homog.
poly. in I of $\operatorname{deg} m$
f is in $\operatorname{ken} \psi \Longleftrightarrow \sum_{\beta=\left(\beta_{0}, \ldots, \beta_{N}\right)} c_{\beta}\left(x^{\alpha_{0}} t\right)^{\beta_{0}} \cdots\left(x^{\alpha_{N}}\right)^{\beta_{N}}=0$

$$
\begin{aligned}
& \sum \beta_{j}=m \\
& \Leftrightarrow \sum_{\beta} c_{\beta} x^{\alpha_{0} \beta_{0}+\cdots+\alpha_{N} \beta_{N}}=0 \\
& \Longleftrightarrow f_{I \operatorname{Im} \Phi_{A}}=0 \int_{\operatorname{Im} \Phi_{A} \text { is }}^{\text {because }} \\
& \Longleftrightarrow f_{x_{A}}=0 \\
& \text { deme in } X_{A} \\
& \Leftrightarrow f \in I\left(X_{A}\right) \text {. }
\end{aligned}
$$

Idea of proof of BKK the.

$$
\left.\begin{array}{l}
R(A)_{m}=\operatorname{spom}\left\langle x^{\alpha} \left\lvert\, \begin{array}{c}
\alpha=\begin{array}{c}
m-f o l d \\
\text { sum of } \\
\alpha_{0}, \ldots, \alpha_{N}
\end{array}
\end{array}\right.\right\rangle \\
\operatorname{d-R(A)_{m}=|\underbrace {A+\cdots +A}_{m\text {times}}|} \\
\underbrace{A+\cdots+A}_{m * A}=\left\{\gamma_{1}+\cdots+\gamma_{m} \mid \gamma_{i} \in A\right.
\end{array}\right\}
$$

- Lemma: $|m * A| \approx \operatorname{vol}(\Delta) m$

$$
\Delta=\operatorname{Conv}(A)
$$

pure combinatorics!

BKK then follows from Hilbert's the.

