April 10 Zoom
One the main goals of intersect. theory is the following: Given variety X
Construct a ring structure on subvarieties of X (similar to cohomology ring in topology)
$+\sim$ Formal addition

$$
\text { alg. cycle }=\sum_{i} a_{i} z_{i}
$$

finite formal sum of subvar. $Z_{i} \subset X$ \& a_{i} from some coff ring. such as \mathbb{Z} or \mathbb{Q}.
$x \sim$ Intersection of subvarieties

For an intro/revien see appendix in Martshorne.

- Main theorem: this is doable when x is non-sing. (Called Chow ring of $)$

Degree of a proj. var. $X \subset \mathbb{P}^{N}$

$$
\bar{k}=k \quad \text { he }
$$

Assumption: Char $k=0$ (if Jouli he $k=\mathbb{C}$)
Def. /hm let $r=\operatorname{dim} X$
proj.
Consider space of all ($N-r$)-dim planes
in \mathbb{P}^{N} (image of all $(N+1-r)$-dim.
planes in \mathbb{E}^{N+1})
This is Grassmannion $G_{r}(N-r, N)$.
(one shows $\operatorname{Gr}(N-r, N)$ is itself a prep.
$L=V\left(\left\langle l_{1}, \ldots, \ell_{r}\right\rangle\right)$
lin. ind.
ℓ_{i} in. poly.
$L \in \operatorname{Gr}_{r}(N-r, N)$

$$
\text { in } x_{0}, \ldots, x_{N}
$$

that are lin. ind.

$$
\tilde{U} \longrightarrow G_{r}(N-r, N)
$$

$$
\begin{aligned}
& \nrightarrow \tilde{U}^{\text {depending on } X} \\
& \exists \text { Mat }_{r \times N+1}
\end{aligned}
$$

Zarishi open non-empty
(or equiv. you can take a Zarrishiopen in $\operatorname{Gr}(N-r, N)$). pros. coder r plane
such that coder r plane

If $\frac{\left(\ell_{1}, \ldots, \ell_{r}\right) \in U}{\& L \text { is "generic" or }}$ \&

$$
\begin{aligned}
L & =V\left(\left\langle l_{1}, \ldots l_{r}\right\rangle\right) \\
& \in \mathbb{P}^{N}
\end{aligned}
$$

then
cardinality of this seat
ind. of choice of L.

$$
d=\operatorname{deg}(X)
$$

we call this number degree of X.
Rem V some variety, any $x \in V$ is called "generic" or" in general position" if $x \in \bigcup_{\text {open }} C V$. non-empty

Ex. $X \in \mathbb{P}^{N} \quad \operatorname{di} X=0$
X finite set

$$
|x|=d
$$

$$
\operatorname{deg}(X)=? \quad \operatorname{din} X=\operatorname{cod} \cdot L=0
$$

$$
d i L=N
$$

$\underbrace{\operatorname{Gr}(N, N)}_{\text {only ore element }}=\left\{\mathbb{P}_{r}^{N}\right\} \quad$ only possible

$$
\operatorname{dy} X=\left|X \cap \mathbb{P}^{N}\right|=|X|=d
$$

Ex. $X \subset \mathbb{P}^{N}$
X r-dim proj.plane L N-r-die prog. plane

$$
|X \cap L|=
$$

$$
\tilde{x}_{x} \subset \mathbb{E}^{N+1}
$$

affine cone

$$
\operatorname{di} \tilde{X}=r+1
$$

$$
\operatorname{div} \widetilde{L}=N+1-r
$$

$1 \cdot \tilde{x} \cap \tilde{L}=$

$$
X \cap L=\{p t\}
$$

$$
|x \cap L|=1
$$

Ex. $\quad x=V(f) \subset \mathbb{P}^{2}$ $f(x, y, z)$ homog. poly. of dey d.

$$
\begin{array}{ll}
\operatorname{deg}(X)=d & \begin{array}{l}
\text { d. } X=1 \\
|X \cap L|=d
\end{array} \\
\begin{array}{l}
\text { L. } L=1 \\
L=\{(x: y: z) \mid \\
\left.l_{1} x+l_{2} y+l_{3} z=0\right\}
\end{array} \\
\text { suberin line } \\
\text { in } f(x, y, z)=-\frac{l_{1} x}{l_{3}}-\frac{l_{2} y}{l_{3}}
\end{array}
$$

we get homog. poly. in x, y of deg. \rightarrow If l_{1}, l_{2}, l_{3} generic it has exactly d solutions $\mathbb{A}^{2} \subset \mathbb{P}^{2}$ by assumption that k aby. closed \& char. $k=0$.

- Same works for hypersurf.

$$
X=V(f) \subset P^{N}
$$

$f=$ homog. pol. of degree d.
Rem you can define degree of an affine variety $X \subset \mathbb{N}^{N}$

Rem Lots of problems in geo./aly./ comb. are about finding degree of a variety.

BKK theorem \leadsto Bernstein (1970's) $\leadsto \begin{gathered}\text { Kushniremko- } \\ \text { Khovanskii }\end{gathered}$

- It is about number of sol. of a system of poly. equ. with fixed exponents.

$$
\begin{aligned}
& \alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n} \\
& x=\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

the x_{i}
$x^{\alpha}:=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ a monomial in
Fix a finite $\operatorname{set} A=\left\{\alpha_{0}, \ldots, \alpha_{N}\right\} \subset \mathbb{Z}^{n}$

$$
\begin{aligned}
& \text { Consider the vec. space } \\
& \mathcal{L}=\left\{f \in k\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right] \mid f=\sum_{i=0}^{N} c_{i} x^{\alpha_{i}}\right\} \\
& =\operatorname{span}\left\{x^{\alpha_{0}, \ldots, x^{\prime}}\right\} \\
& \qquad \begin{array}{l}
\alpha_{N}, \ldots \in\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]
\end{array}
\end{aligned}
$$

- Any $f \in k\left[x^{ \pm}-x_{n}^{ \pm}\right]$can be evaluated at $(k \backslash 0)^{n}$.
T alg. torus
Exercise: $(k>0)^{n} \subset \mathbb{A}^{n}$
(quani-affine by def.)
is itself affine var. (i.e. iso. to

$$
\begin{aligned}
& n=1 \text { : } \\
& \mathbb{A}>0 \subset \mathbb{H} \\
& \{x \neq 0\} \cong\{x y-1=0\} \subset \mathbb{A}^{2} \\
& \frac{k[T]}{\text { bring of reg. functions }} \cong k\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right] \text {. }
\end{aligned}
$$

For Lingyu:
Exercise: $\mathbb{A}^{n}\{0\}$ is quani-affine but not affine var.

$$
\begin{aligned}
& \text { but not affine var. } \\
& O\left(\mathbb{E}^{n} \backslash\{0\}\right)=O\left(\mathbb{E}^{n}\right)=h\left[x \cdots x_{n}\right] \text {. }
\end{aligned}
$$

BKK thm

$$
\begin{aligned}
& \text { Fix } A=\left\{\alpha_{0}, \ldots, \alpha_{N}\right\} \subset \mathbb{Z}^{n} \\
& \mathcal{L}=\mathcal{L}_{A}=\operatorname{span}\left\{x^{\alpha_{0}}, \ldots, x^{\alpha_{N}}\right\} \subset \\
& \\
& \quad k\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]
\end{aligned}
$$

$\operatorname{dim}_{k} \mathcal{L}=N+1=|A|$. coeff c_{i} in $\sum_{c_{i} x^{\alpha_{i}}}$
Take $\left(f_{1}, \ldots, f_{n}\right)$ "generic" $\in \underbrace{\text { coefore }}_{n} \underset{\text { arandom }}{\mathcal{L}^{\frac{\text { ran }}{x-\mathcal{L}}}}$
Then

$$
\begin{aligned}
& \mid\left\{z=\left(z_{1}, \cdots, z_{n}\right) \in(k \backslash 0)^{n} \mid\right. \\
& \left.\quad f_{1}(z)=\cdots=f_{n}(z)=0\right\} \mid
\end{aligned}
$$

is: (1) ind. of $\left(f, \ldots, f_{n}\right) \in \mathcal{L} \times \ldots \times \mathcal{L}$
(2) This number is equal:

$$
n!V_{0} V_{n}(\operatorname{conv}(A)) .
$$

Enclidean vol. (Lebengue mearme)

Ex. $n=1 \quad A=\{0, \ldots, d\}$
$\mathcal{L}=$ All poly. of degree d.
BKK: If coeff. of $f(x)=c_{0}+c_{1} x+\ldots$ $c_{d} x^{d}$
are "generic" (f gen. poly. of dey)
then \# of roots of $f=1!d$

length of $\operatorname{conv}(A)=d$

Ex. $n=2$

$\mathcal{L}=$ All poly. of deg.d in x, y
$f, g \in \mathcal{L}$ generic

$$
\begin{gathered}
x, y \neq 0 \\
f(x, y)=g(x, y)=0
\end{gathered}
$$

\# of sol. $=2!$ Area of

$$
\frac{1}{2} d^{2}
$$

$$
=d^{2} \longrightarrow \text { agrees }
$$ with Bezout the.

Proof uses the important notion of Hilbert function/ polynomial of a proj'var. / graded module.
$X \subset \mathbb{P}^{N}$ prog. var.
$k[X]=$ homog. Coon. rig

$$
\begin{aligned}
& I=I(X) \\
& \text { homos. } \\
& \text { ideal. }
\end{aligned}
$$

$$
:=k\left[z_{0}, \ldots, z_{N}\right] / I
$$

$$
\begin{aligned}
& k[X]=\bigoplus_{m \geqslant 0} k[X]_{m} \\
& k[X]_{m}=k\left[z_{0},-, z_{N}\right]_{m} \bmod I \\
& d L k[X]_{m}<\infty
\end{aligned}
$$

Def. $H_{X}: \mathbb{N} \longrightarrow \mathbb{N}$ Hilbert function of $x c \mathbb{P}^{N}$ is: $\quad H_{X}(m):=\operatorname{dic}_{k} k[X]_{m}$.

The (Hilbert) Let $r=\operatorname{din} X$ - \exists poly. $P_{x}(m)$ st. $H_{x}(m)=P_{x}(m) \quad$ for $m \gg 0$.

- degree of poly. $P_{x}(m)=\operatorname{dim} X$
- degree of $X=r!$. leading corf.

