MATH 2810 Algebraic Geometry, Homework 3

Kiumars Kaveh

April 1, 2020

Due: Monday April 13, 2020

- In all the problems \mathbf{k} denotes the ground field and is assumed to be algebraically closed. If not specified, by an algebraic variety we mean a quasiprojective algebraic variety. You can of course use theorems stated in class.

Problem 1: Let $C \subset \mathbb{A}^{2}$ be the curve defined by the irreducible polynomial

$$
x^{6}+y^{6}-x y=0 .
$$

(1) Show that C is not a normal variety. (2) Show that the maximal ideal of the origin $o \in C$ is not a principal ideal. (3) Let $\phi: \mathrm{Bl}_{o}\left(\mathbb{A}^{2}\right) \rightarrow \mathbb{A}^{2}$ be the blow-up of \mathbb{A}^{2} at the origin o. Let \tilde{C} be the strict transform of C, i.e. $\tilde{C}=\overline{\phi^{-1}(C \backslash\{o\})}$. Describe the points in \tilde{C} which lie above $o \in C$.

Problem 2: Consider the circle $C=V\left(x^{2}+y^{2}-1\right)$ and the line $L=V(y-1)$. Consider the point $p=(0,1)$ which lies on both C and L and let $R=\mathcal{O}_{p, C}$ and $R^{\prime}=\mathcal{O}_{p, L}$ be local rings of C and L at p respectively. Verify the Cohen Structure Theorem directly by showing that the completions \hat{R} and \hat{R}^{\prime} are both isomorphic (as \mathbf{k}-algebras) to formal power series ring in one variable.

Problem 3: For simplicity let $\mathbf{k}=\mathbb{C}$. Consider the affine curves C below (in \mathbb{A}^{2}) with given points on them. (1) If p is a non-singular point, verify directly that the maximal ideal in the corresponding local ring is principal by finding a single generator for it. (2) If p is a singular point verify directly that the corresponding local ring is not integrally closed.
(a) $y^{3}=x^{4}, p=(0,0)$.
(b) $x^{3}+y^{3}=1, p=(1,0)$.

Problem 4: Show that the cone $x^{2}+y^{2}=z^{2}$ is a normal variety, even though the origin is singular (characteristic $\neq 2$).

Other problems (no need to hand in)

Problem: Given a smooth point on a variety and a tangent vector at the point, show that there is a smooth curve passing through the point with the given vector as its tangent vector.

