MATH 2810 Algebraic Geometry, Homework 3

Kiumars Kaveh

March 14, 2020

Due: Monday March 30, 2020

- In all the problems \mathbf{k} denotes the ground field and is assumed to be algebraically closed. If not specified, by an algebraic variety we mean a quasiprojective algebraic variety.

Problem 1: Let X be an (quasi-projective) algebraic variety and let $p \in X$. Show that $\mathcal{O}_{p, X}$ is an integral domain if and only if p belongs to a unique irreducible component of X (hint: first reduce the problem to the case where X is an affine variety).

Problem 2: Recall that the field of rational functions $\mathbf{k}(X)$, of an irreducible (quasi-projective) algebraic variety X, is the collection of all rational functions on X. A rational function is a regular function f on some non-empty open subset $U \subset X$ (up to the equivalence that $(f, U) \cong(g, V)$ if $f=g$ on $U \cap V$.
(a) Verify that any two open subsets in X intersect and hence the field operations on $\mathbf{k}(X)$ are well-defined. Then show that $\mathbf{k}(X)$ is in fact a field.
(b) Show that if X is an affine variety then its field of rational functions coincides (is naturally isomorphic to) the field of fractions of its coordinate ring $\mathbf{k}[X]$ (you can use or refer to material from class).

Problem 3: Show that any two smooth quadrics in \mathbb{P}^{n} are isomorphic. Recall that a quadric (in \mathbb{P}^{n}) is a subvariety defined by a (homogeneous) quadratic polynomial.

Problem 4: Consider the affine curves C (in \mathbb{A}^{2}) below. Find the points at infinity on these curves (that is, points on the closure of C in \mathbb{P}^{2} that are
not in \mathbb{A}^{2}). Decide for each point at infinity if it is singular or non-singular and find its tangent space and tangent cone.
(a) $y^{2}=x^{3}+a x+b$
(b) $y=x^{3}$
(c) $x^{3}+x^{2} y-y=0$

Other problems (no need to hand in)

Problem: Show that the Plücker map from $\operatorname{Gr}(2,4)$ to \mathbb{P}^{5} is an embedding and the image is a closed subvariety (it is in fact, a hypersurface given by one equation, the Plücker relation).

