MATH 2810 Algebraic Geometry, Homework 1

Kiumars Kaveh

February 7, 2020

Due: Monday February 24, 2020

- In all the problems ${\bf k}$ denotes the ground field and is assumed to be algebraically closed.

Problem 1: Let $X = V(f) \subset \mathbb{A}^n$ be an affine variety defined by a single polynomial f. Prove that $\dim(X) = n - 1$.

Problem 2: Let $X \subset \mathbb{A}^n$ be an algebraic set with \overline{X} its closure in \mathbb{P}^n . Show that X is irreducible if and only if \overline{X} is irreducible.

Problem 3: Let $A = \bigoplus_{i \ge 0} A_i$ be a graded ring. Recall that an ideal $I \subset A$ is homogeneous if it is generated by homogeneous elements.

- (a) Show that if I is homogeneous then the following holds: let $f = \sum_i f_i \in A$ where f_i denotes the homogeneous degree i component of f. Then $f \in I$ if and only if $f_i \in I$, for all i.
- (b) Show that if I is homogeneous then its radical \sqrt{I} is also homogeneous.

Problem 4: (Rational normal curve) Consider the *n*-uple morphism (also called a Veronese map) $\phi : \mathbb{P}^1 \to \mathbb{P}^n$ given by $(t, s) \mapsto (t^n : st^{n-1} : \cdots : s^n)$. Prove that the image of ϕ is a projective subvariety C_n of \mathbb{P}^n (that is, it is a Zariski closed subset of \mathbb{P}^n).

Problem 5: Consider the hyperbola X = V(xy - 1) and the parabola $Y = V(x^2 - y)$ as affine varieties in \mathbb{A}^2 (the names hyperbola and parabola are motivated by the case $\mathbf{k} = \mathbb{R}$). Let \mathbb{P}^2 be the projective plane with coordinates (x : y : z), and $\mathbb{A}^2 = \{(x : y : z) \mid z \neq 0\}$. Let \overline{X} and \overline{Y} denote the closures of X and Y in \mathbb{P}^2 respectively.

- (a) Find homogeneous ideals defining \overline{X} and \overline{Y} in \mathbb{P}^2 .
- (b) How many points of intersection do \overline{X} and \overline{Y} have?
- (c) Find an automorphism ϕ of the projective plane \mathbb{P}^2 which maps \overline{X} to \overline{Y} .

Problem 6: Let $X = V(y - x^2, z - x^3) \subset \mathbb{A}^3$. Prove the following:

- (a) $I = I(X) = \langle y x^2, z x^3 \rangle$.
- (b) Let \overline{I} be the homogenization of I, that is, ideal in $\mathbf{k}[x, y, z, w]$ generated by the homogenizations of all the elements of I. Show that $zw - xy \in \overline{I}$ but $zw - xy \notin \langle wy - x^2, w^2z - x^3 \rangle$. That is, \overline{I} is not generated by homogenizations of a set of generators for I.

Problem 7: Consider the 3-uple embedding from $\phi : \mathbb{P}^1 \to \mathbb{P}^3$:

$$(s:t) \mapsto (t^3: t^2s: ts^2: s^3).$$

Let Y be the image of this map. We know that Y is an irreducible projective algebraic subvariety of \mathbb{P}^3 whose homogeneous ideal I in $\mathbf{k}[x, y, z, w]$ is generated by $F_0 = xz - y^2$, $F_1 = yw - z^2$ and $F_2 = xw - yz$. Show that no two of the polynomials F_0 , F_1 , F_2 can generate I.

Other problems (no need to hand in)

Problem: Let $X \subset \mathbb{P}^n$ be a projective algebraic variety. Suppose $X \cap U_0 \neq \emptyset$ where U_0 is the open chart in \mathbb{P}^n defined by $x_0 \neq 0$. Show that dimensions of X (as a projective subvariety of \mathbb{P}^n) and $X \cap U_0$ (as an affine variety in $U_0 = \mathbb{A}^n$) coincide. Use this to give a proof that the rational normal curve has dimension 1.

Problem: Let $\phi : \mathbb{A}^1 \to \mathbb{A}^3$ be defined by $t \mapsto (t^2, t^3)$. Show that ϕ is a morphism which is a homeomorphism onto the curve $y^2 - x^3 = 0$ but ϕ is not an isomorphism.

Problem: Give a continuous map from the projective plane \mathbb{CP}^2 onto the (standard) simplex Δ with vertices (1,0,0), (0,1,0), (0,0,1) such that the inverse image of each point in the interior of Δ is the topological torus $S^1 \times S^1$ (donut shape).

Problem:

- (a) Let f(x, y), g(x, y) be homogeneous polynomials of the same degree d defining a morphism $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi(x : y) = (f(x, y) : g(x, y))$. Prove that ϕ is an automorphism if and only if f, g are linear functions that are linearly independent. In other words, $\phi \in \text{PGL}(2)$.
- (b) Write 0, 1, ∞ for the points (0 : 1), (1 : 1) and (1 : 0) on \mathbb{P}^1 . Show that for any distinct points P_0, P_1, P_2 on \mathbb{P}^1 there is an automorphism ϕ such that:

$$\phi(0) = P_0, \quad \phi(1) = P_1, \quad \phi(\infty) = P_2.$$

Remark: This is not true for four points, that is, automorphism group of \mathbb{P}^1 is not 4-transitive. This is related to the notion of *cross ratio*.