MATH 2810 Algebraic Geometry, Homework 2

Kiumars Kaveh

March 11, 2015

Due: March 27, 2015

- In all the problems \mathbf{k} denotes the ground field and is assumed to be algebraically closed. Also an algebraic variety (unless otherwise specified) means a quasi-projective variety, that is a Zariski open subset of a projective variety. Quasi-projective varieties by definition include projective varieties, affine varieties and their Zariski open subsets.

Problem 1: Consider the hyperbola $X=V(x y-1)$ and the parabola $Y=V\left(x^{2}-y\right)$ as affine varieties in \mathbb{A}^{2} (the names hyperbola and parabola are motivated by the case $\mathbf{k}=\mathbb{R}$). Let \mathbb{P}^{2} be the projective plane with coordinates $(x: y: z)$, and $\mathbb{A}^{2}=\{(x: y: z) \mid z \neq 0\}$. Let \bar{X} and \bar{Y} denote the closures of X and Y in \mathbb{P}^{2} respectively.
(a) Find homogeneous ideals defining \bar{X} and \bar{Y} in \mathbb{P}^{2}.
(b) How many points of intersection do \bar{X} and \bar{Y} have?
(c) Find an automorphism ϕ of the projective plane \mathbb{P}^{2} which maps \bar{X} to \bar{Y}.

Problem 2: Let $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be a radical ideal. Prove that homogenization of I is a radical ideal in $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$.

Problem 3: Show that the projective space \mathbb{P}^{n} is an abstract variety (see definitions in Appendix A in Karen Smith's, you can skip some straightforward details but please explain clearly.)

Problem 4: Let X be the curve in \mathbb{A}^{2} defined by the equation $y^{2}=$ $x^{3}+a x+b$ (it is usually called an elliptic curve. Show that the closure \bar{X} of X in \mathbb{P}^{2} has one extra point which we call the point at infinity O.

Show that the line at infinity $\mathbb{P}^{2} \backslash \mathbb{A}^{2}$ is tangent to \bar{X} at O. Hint: let $\left(x_{1}, x_{2}\right)$ be the coordinates in \mathbb{A}^{2} and $\left(x_{0}: x_{1}: x_{2}\right)$ the homogeneous coordinate in \mathbb{P}^{2}. Write down the equation of the curve \bar{X} in the coordinate chart $x_{1} \neq 0$.

Problem 5: Show that $\mathbb{C}^{2} \backslash\{(0,0)\}$ is a quasi-affine variety (i.e. open subset of an affine variety) but it is not an affine variety (i.e. not isomorphic to an affine variety in some affine space \mathbb{C}^{m}).

Problem 6: Consider the Veronese embedding from $\phi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$:

$$
(s: t) \mapsto\left(t^{3}: t^{2} s: t s^{2}: s^{3}\right)
$$

Let Y be the image of this map. We know that Y is an irreducible projective algebraic subvariety of \mathbb{P}^{3} whose homogeneous ideal I in $\mathbf{k}[x, y, z, w]$ is generated by $F_{0}=x z-y^{2}, F_{1}=y w-z^{2}$ and $F_{2}=x w-y z$. Show that no two of the polynomials F_{0}, F_{1}, F_{2} can generate I.

Problem 7: Consider the variety

$$
T=\left(\mathbf{k}^{*}\right)^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \neq 0, \forall i\right\}
$$

which is an open subset of affine space \mathbb{A}^{n}. The variety T is called the algebraic torus. Note that T is a group with multiplication, and when $\mathbf{k}=\mathbb{C}$, T contains the topological torus $\left(S^{1}\right)^{n}$ as a subgroup.
(a) Show that T is an affine variety. That is, find an isomorphism between T and an affine variety in some affine space \mathbb{A}^{N}.
(b) Show that the ring $\mathcal{O}(T)$ of regular functions on T is the ring of Laurent polynomials $\mathbf{k}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

Problem 8: Consider the Grassmannian variety $\operatorname{Gr}(2,3)$. We regard it as the variety of all the projective lines in \mathbb{P}^{2}. Fix an irreducible conic C in \mathbb{P}^{2} (i.e. an irreducible curve defined by a homogenous quadratic polynomial). Show that the set of lines in \mathbb{P}^{2} that fail to intersect C in exactly two (distinct) points is a (closed) subvariety of $\operatorname{Gr}(2,3)$. Hint: Let C be given by a quadratic polynomial $p(x, y)=0$. Write the condition for a line $a x+b y+b z=0$ to intersect the conic C in one point (note that any line and C have at least one point of intersection).

Some more problems:

Problem: Let $V \subset \mathbb{A}^{n}$ be an affine variety. Prove that the Zariski closure $\bar{V} \subset \mathbb{P}^{n}$ coincides with the closure of V in \mathbb{P}^{n} with respect to the Euclidean topology. Hint: Let \bar{V}_{Z} and \bar{V}_{E} denote the closure with respect to the Zariski topology and the Euclidean topology. Since the Zariski topology is coarser that the Euclidean topology we have $\bar{V}_{E} \subset \bar{V}_{Z}$. Show the other inclusion.

Problem: Given an integral point $\mathbf{a}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ let $x^{\mathbf{a}}$ denote the monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. Take a finite subset of integral point $A=\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right\} \subset$ \mathbb{Z}^{n}. Consider the morphism of algebraic varieties $\Psi_{A}: T \rightarrow \mathbb{A}^{N}$ given by

$$
\Psi_{A}: x=\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x^{\mathbf{a}_{1}}, \ldots, x^{\mathbf{a}_{N}}\right) .
$$

Let X_{A} denote the closure of the image of Ψ_{A} in \mathbb{A}^{N}.
(a) Prove that Ψ_{A} is one-to-one if and only if the set A generates \mathbb{Z}^{n} as a group. (Hint: note that $\Psi_{A}: T \rightarrow\left(\mathbf{k}^{*}\right)^{N}$ is a homomorphism of multiplicative groups.)
(b) Prove that the coordinate ring of X_{A} is the subalgebra of the ring of Laurent polynomials $\mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ generated by the monomials $\left\{x^{\mathbf{a}} \mid \mathbf{a} \in A\right\}$.

Problem: With notation as in the previous problem, show that if the image of Ψ_{A} is closed in the affine space \mathbb{A}^{N} then the origin in \mathbb{R}^{n} should lie in the convex hull $\Delta(A)$ of A. (The converse statement is also true and follows from the famous Hilbert-Mumford criterion in invariant theory.) Hint: show that if the origin is outside $\Delta(A)$ then the origin O in \mathbb{A}^{N} is in the closure of $\Psi(T)$ and O is not in $\Psi(T)$ by definition of Ψ. To do this, show that there is a curve $\gamma(t)=\left(t^{e_{1}}, \ldots, t^{e_{N}}\right)$, for some non-negative integers e_{i}, such that for $t \neq 0, \gamma(t)$ lies in $\Psi(T)$ and clearly $\lim _{t \rightarrow 0} \gamma(t)=O$.

Problem: Equip $\mathbb{P}^{n} \times \mathbb{P}^{m}$ with the topology given by the Zariski topology on its image under the Segre map. Show that a subset $Z \subset \mathbb{P}^{n} \times$ \mathbb{P}^{m} is closed if and only if it is defined by a collection of polynomials in $\mathbf{k}\left[x_{0}, \ldots, x_{n}, y_{0}, \ldots, y_{m}\right]$ which are homogeneous separately in the variables x_{i} and in the variables y_{j}.

Problem: Prove the following:
(a) Let $\operatorname{char}(\mathbf{k})=p$. Show that the Frobenious morphism $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ given by $x \mapsto x^{p}$ is a homeomorphism (with respect to Zariski topology) but is not an isomorphism (i.e. ϕ^{-1} is not a morphism).
(b) Let $\phi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{3}$ be defined by $t \mapsto\left(t^{2}, t^{3}\right)$. Show that ϕ is a morphism which is a homeomorphism onto the curve $y^{2}-x^{3}=0$ but ϕ is not an isomorphism.

