MATH 2810 Algebraic Geometry, Homework 1

Kiumars Kaveh

February 7, 2020

Due: Wednesday February 5, 2020

- In all the problems \mathbf{k} denotes the ground field and is assumed to be algebraically closed.

Problem 1:

(a) Show that the Zariski topology on an algebraic set is quasi-compact in the sense that any open cover has a finite subcover.
(b) Show that Zariski topology on an algebraic set is not Hausdorff unless it is a finite set. In fact, show that a Hausdorff space is Noetherian if and only if it is finite.

Problem 2:

(a) Show that the Zariski topology on \mathbb{A}^{2} is not the product topology on $\mathbb{A}^{1} \times \mathbb{A}^{1}$. (Hint: Consider the diagonal.)
(b) Show that every non-empty Zariski open set is dense in \mathbb{A}^{n}.

Problem 3: Let X be an algebraic set. Show that there is a one-to-one correspondence between points of X and maximal ideals in $\mathbf{k}[X]$. Moreover, show that there is a one-to-one correspondence between irreducible closed subsets of X and prime ideals in $\mathbf{k}[X]$.

Problem 4: Let \mathbf{k} be a field of characteristic $\neq 2$. Decompose the algebraic set $X \subset \mathbb{A}^{3}$ defined by the equations $x^{2}+y^{2}+z^{2}=0$ and $x^{2}-y^{2}-z^{2}+1=0$, into irreducible components.

Problem 5: Let $X=\left\{\left(t^{2}, t^{3}\right) \mid t \in \mathbf{k}\right\}$ be a twisted cubic curve. Show that X is an irreducible algebraic variety which is not isomorphic to the affine line \mathbb{A}^{1}. On the other hand, let $\mathbf{k}(X)$ be the quotient field of the coordinate ring $\mathbf{k}[X]$ (this is called the field of rational functions on X). Show that the field $\mathbf{k}(X)$ is isomorphic (as a \mathbf{k}-algebra) to the field of rational polynomials $\mathbf{k}(t)$ (in one variable t).

Problem 6: Let $X \subset \mathbb{A}^{n+1}$ be a hypersurface defined by a polynomial $f \in \mathbf{k}\left[t_{1}, \ldots, t_{n}, x\right]$. Let

$$
f=a_{m} x^{m}+\cdots+a_{0}
$$

where $a_{i} \in \mathbf{k}\left[t_{1}, \ldots, t_{n}\right]$. Consider the projection map $\varphi: X \rightarrow \mathbb{A}^{n}$ given by $\left(t_{1}, \ldots, t_{n}, x\right) \mapsto\left(t_{1}, \ldots, t_{n}\right)$. Prove that φ is a finite map if and only if a_{m} is a nonzero constant polynomial.

Problem 7: Give an example of a morphism $\varphi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ whose image is neither closed nor open.

Some more problems (no need to hand in):

Problem: Find the Zariski closure of the graph of the function $y=e^{x}$ in the affine space \mathbb{C}^{2}. You can use the fact that e^{x} is not algebraic over the field of rational polynomials $\mathbb{C}(x)$.

Problem: Show that a radical ideal I in the $\operatorname{ring} \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ is the intersection of all the maximal ideals containing I.

Problem: Assume that \mathbf{k} is a field of characteristic p. Show that the Frobenius morphism $\mathbb{A}^{1} \rightarrow \mathbb{A}^{1}, x \mapsto x^{p}$ is a homeomorphism (that is, a bijection with a continuous inverse). Show that this morphism is not an isomorphism.

Problem: Consider the parameterized curve $C=\left\{\left(t^{3}, t^{4}, t^{5}\right) \mid t \in \mathbf{k}\right\}$. Is C an irreducible algebraic set in \mathbb{A}^{3} ? Prove your claim.

Problem: Consider the algebraic set $V=V(x y+z w) \subset \mathbb{A}^{4}$.
(a) Show that $x y+z w$ is an irreducible polynomial, and conclude that V is an irreducible variety.
(b) Prove that the coordinate ring $\mathbf{k}[V]$ of V is not a UFD.

Problem: Suppose $\phi: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is a morphism. Let $J \phi(x)=\operatorname{det}\left(\partial \phi_{i} / \partial x_{j}\right)$ denote the Jacobian of ϕ at $x=\left(x_{1}, \ldots, x_{n}\right)$, that is, the determinant of the matrix of partial derivatives. Show that if ϕ is an automorphism, i.e., ϕ is a bijection and ϕ^{-1} is also a morphism, then $J \phi(x)$ is a nonzero constant function. (The famous Jacobian conjecture claims that the opposite is also true.) Give an example of an automorphism of \mathbb{A}^{n} which is not linear.

Problem: Consider the curve $C=\left\{\left(t, t^{2}, \ldots, t^{n}\right) \mid t \in \mathbf{k}\right\}$.
(a) Prove that C is an irreducible algebraic set in \mathbb{A}^{n} of dimension 1 . It is usually known as the rational normal curve.
(b) Find generators for the ideal I of C. Show that it can be generated by $n-1$ elements (i.e. C is a local complete intersection).
(c) Prove that $\mathbf{k}[C] \cong \mathbf{k}[t]$, the polynomial ring in one variable t.

Problem: Show that a variety V in \mathbb{C}^{n} is bounded (in the usual metric on \mathbb{C}^{n}) if and only if it is a finite set. Use this to show that the set $U(n)$ of $n \times n$ unitary matrices is not an algebraic variety of $\mathbb{C}^{n^{2}}=M(n, \mathbb{C})$, the affine space of all $n \times n$ complex matrices. On the other hand, show that $U(n)$ is an algebraic subvariety of $\mathbb{R}^{2 n^{2}}=M(2 n, \mathbb{R})$, the affine space of all $2 n \times 2 n$ real matrices.

