MATH 2810 Algebraic Geometry Homework 1 and some practice problems

Kiumars Kaveh

Due: February 16, 2015

Do problems 1-10.
Throughout \mathbf{k} denotes an algebraically closed field. In some of the questions the base field is \mathbb{C}. You can use material proved in class or in Karen Smith's book.

Problem 1: Show that the zero set of a non-zero polynomial in $\mathbb{C}[x, y]$ does not have interior points (with respect to the usual Euclidean topology on \mathbb{C}^{2}). (The same statement holds with similar proof in all dimensions.)

Problem 2:

(a) Show that the Zariski topology on \mathbb{A}^{2} is not the product topology on $\mathbb{A}^{1} \times \mathbb{A}^{1}$. (Hint: Consider the diagonal.)
(b) Show that every non-empty Zariski open set is dense in \mathbb{A}^{n} (in Zariski topology).

Problem 3: Show that the dimension of an affine algebraic variety is finite.
Problem 4: Show that a radical ideal I in the ring $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ is the intersection of all the maximal ideals containing I.

Problem 5: Find the Zariski closure of the graph of the function $y=e^{x}$ in the affine space \mathbb{C}^{2}.

Problem 6: Consider the twisted cubic curve $C=\left\{\left(t^{3}, t^{4}, t^{5}\right) \mid t \in \mathbf{k}\right\}$. Prove that C is an irreducible algebraic set in \mathbb{A}^{3} of dimension 1.

Problem 7: Let \mathbf{k} be a field of characteristic $\neq 2$. Decompose the algebraic set $X \subset \mathbb{A}^{3}$ defined by the equations $x^{2}+y^{2}+z^{2}=0$ and $x^{2}-y^{2}-z^{2}+1=0$, into irreducible components.

Problem 8: (Related to Gröbner bases and monomial orders) Fix a term order $<$ on \mathbb{Z}^{n}. Let $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\alpha=\left(a_{1}, \ldots, a_{n}\right)} c_{\alpha} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ be a non-zero polynomial. Let $v(f)$ denote the highest exponent of f with respect to $<$, that is:

$$
v(f)=\max \left\{\alpha \mid c_{\alpha} \neq 0\right\} \in \mathbb{Z}_{\geq 0}^{n} .
$$

Let L be a finite dimensional vector subspace of polynomials. Show that $\operatorname{dim}_{\mathbf{k}}(L)$ is equal to the number of elements in the set $v(L \backslash\{0\}) \subset \mathbb{Z}_{\geq 0}^{n}$, that is the number of highest exponents appearing in any $f \in L$.

Problem 9: Let $X=\left\{\left(t^{2}, t^{3}\right) \mid t \in \mathbf{k}\right\}$ be a twisted cubic curve. Show that X is an irreducible algebraic variety which is not isomorphic to the affine line \mathbb{A}^{1}. On the other hand, let $\mathbf{k}(X)$ be the quotient field of the coordinate ring $\mathbf{k}[X]$ (this is called the field of rational functions on X). Show that the field $\mathbf{k}(X)$ is isomorphic (as a \mathbf{k}-algebra) to the field of rational polynomials $\mathbf{k}(t)$ (in one variable t).

Problem 10: Let $X \subset \mathbb{A}^{n}$ be an algebraic variety. Show that for any $p=\left(a_{1}, \ldots, a_{n}\right)$ the ideal $\mathfrak{m}_{p}=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle$ is a maximal ideal and consists of all the functions in $\mathbf{k}[X]$ which vanish at p. Show that $p \mapsto \mathfrak{m}_{p}$ gives a one-to-one correspondence between the points in X and the maximal ideals in $\mathbf{k}[X]$.

Some more problems:

Problem 11: Consider the algebraic set $V=\mathbb{V}(x y+z w) \subset \mathbb{A}^{4}$.
(a) Show that $x y+z w$ is an irreducible polynomial, and conclude that V is an irreducible variety.
(b) Prove that the coordinate ring $\mathbf{k}(V)$ of V is not a UFD.

Problem 12: Show that in a ring R, a point in $\operatorname{Spec} R$ is closed if and only if it corresponds to a maximal ideal. Moreover, show that if R is an integral domain then the prime ideal $\{0\}$ is dense in $\operatorname{Spec} R$.

Problem 13: Suppose $\phi: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is a morphism. Let $J \phi(x)=\operatorname{det}\left(\partial \phi_{i} / \partial x_{j}\right)$ denote the Jacobian of ϕ at $x=\left(x_{1}, \ldots, x_{n}\right)$, that is, the determinant of
the matrix of partial derivatives. Show that if ϕ is an automorphism, i.e., ϕ is a bijection and ϕ^{-1} is also a morphism, then $J \phi(x)$ is a nonzero constant function. (The famous Jacobian conjecture claims that the opposite is also true.) Give an example of an automorphism of \mathbb{A}^{n} which is not linear.

Problem 14: Show that in Zariski topology the affine space \mathbb{A}^{n} is compact (i.e. every open cover has a finite subcover).

Problem 15: Consider the curve $C=\left\{\left(t, t^{2}, \ldots, t^{n}\right) \mid t \in \mathbf{k}\right\}$.
(a) Prove that C is an irreducible algebraic set in \mathbb{A}^{n} of dimension 1. It is usually known as the rational normal curve.
(b) Find generators for the ideal I of C. Show that it can be generated by $n-1$ elements (i.e. C is a local complete intersection).
(c) Prove that $\mathbf{k}[C] \cong \mathbf{k}[t]$, the polynomial ring in one variable t.

Problem 16: Show that a variety V in \mathbb{C}^{n} is bounded (in the usual metric on \mathbb{C}^{n}) if and only if it is a finite set. Use this to show that the set $U(n)$ of $n \times n$ unitary matrices is not an algebraic variety of $\mathbb{C}^{n^{2}}=M(n, \mathbb{C})$, the affine space of all $n \times n$ complex matrices. On the other hand, show that $U(n)$ is an algebraic subvariety of $\mathbb{R}^{2 n^{2}}=M(2 n, \mathbb{R})$, the affine space of all $2 n \times 2 n$ real matrices.

Problem: $\mathbf{1 7}$ Let the group S_{3} of permutations of three letters act on the polynomial ring $\mathbf{k}\left[x_{1}, x_{2}, x_{3}\right]$ by permutation of the variables. Find the ring of invariant polynomials.

Problem 18: Show that if $X \rightarrow Y$ is a surjective morphism of affine algebraic varieties, then the dimension of X is at least as large as the dimension of Y.

