MATH2810: Introduction to Algebraic Geometry

Take home Final Exam (April 23, 2020)
Kiumars Kaveh

Due: by 8am Saturday April 25th.

You only need to do 5 out of 6 problems, although you will receive extra points for doing all of them. In all the problems the ground field \mathbf{k} is an algebraically closed field. You can use theorems from class unless otherwise stated in the problem.

Problem 1: State the following:
(a) Definitions of a ringed space and abstract variety.
(b) Hilbert's theorem on Hilbert polynomial and degree, and the BKK theorem on the number of solutions of a system of Laurent polynomial equations.

Problem 2: Let q_{0}, \ldots, q_{N} be positive integers with $\operatorname{gcd}\left(q_{0}, \ldots, q_{N}\right)=1$. Define the weighted projective space $\mathbb{P}\left(q_{0}, \ldots, q_{N}\right)$ (as a set) by:

$$
\mathbb{P}\left(q_{0}, \ldots, q_{N}\right)=\left(\mathbb{C}^{N+1} \backslash\{0\}\right) / \sim,
$$

where \sim is the equivalence relation given by:

$$
\left(x_{0}, \ldots, x_{N}\right) \sim\left(y_{0}, \ldots, y_{N}\right) \Longleftrightarrow \exists 0 \neq \lambda \in \mathbf{k}, x_{i}=\lambda^{q_{i}} y_{i}, \forall i=0, \ldots, N .
$$

Similarly to the projective space, we denote the equivalence class of $\left(x_{0}, \ldots, x_{N}\right)$ by $\left(x_{0}: \cdots: x_{N}\right)$.

Consider the weighted projective space $\mathbb{P}(1,1,2)$ and the map $\Phi: \mathbb{P}(1,1,2) \rightarrow$ \mathbb{P}^{3} given by:

$$
\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{0}^{2}: x_{0} x_{1}: x_{1}^{2}: x_{2}\right) .
$$

(a) Show that this map is one-to-one and its image $X=\operatorname{Im}(\Phi)$ is a closed subvariety. Find the defining homogeneous equation of $X \subset \mathbb{P}^{3}$.
(b) Is X a smooth variety? Prove or disprove your claim. Hint: look at X in different affine charts in \mathbb{P}^{3}.
(c) Use the BKK theorem to find the degree of X in \mathbb{P}^{3}. Hint: restrict Φ to an open subset of $\mathbb{P}(1,1,2)$ which is a copy of $(\mathbf{k} \backslash\{0\})^{2}$.

Problem 3: Analogous to the case of projective space \mathbb{P}^{3}, write the affine charts in the weighted projective space $\mathbb{P}(1,1,2)$ and the gluing maps between them to show that $\mathbb{P}(1,1,2)$ can be realized as an abstract pre-variety.

Problem 4: Find the Hilbert polynomial of $X=\mathbb{P}^{n} \times \mathbb{P}^{m}$ embedded in $\mathbb{P}^{(n+1)(m+1)-1}$ via the Serge embedding. Find the degree of X in $\mathbb{P}^{(n+1)(m+1)-1}$.

Problem 5: Consider the affine plane curve $X=V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$ with coordinate ring $\mathbf{k}[X]=\mathbf{k}[x, y] /\left(y^{2}-x^{3}\right)$.
(a) Show that $f=y / x \in k(X)$ is integral over $k[X]$.
(b) Use f to construct the normalization $\tilde{X} \subset \mathbb{A}^{3}$ and the normalization map $\pi: \tilde{X} \rightarrow X$ (verify that \tilde{X} you constructed is actually a normal variety).

Problem 6: Assume we know the following fact: intersection of a projective variety $X \subset \mathbb{P}^{N}$ with a hyperplane H in general position has dimension $\operatorname{dim}(X)-1$ (this is a corollary of the well-known Krull's principal ideal theorem or Hauptidealsatz). Prove the following:
(a) Suppose $L \subset \mathbb{P}^{N}$ is a plane in general position with $\operatorname{codim}(L)>$ $\operatorname{dim}(X)$. Show that $X \cap L$ is empty.
(b) If $U \subset X$ is a nonempty open subset then $\operatorname{deg}(U)=\operatorname{deg}(X)$. Recall that degree is the number of intersection points with a plane of complementary dimension.

