MAT2810: Introduction to Algebraic Geometry

Take home Final Exam (April 26, 2015)
Kiumars Kaveh

Due: by 11:59 and 59 seconds am Tuesday noon April 28, 2015.

You only need to do the first 4 problems, although you will receive extra points for doing the 5 th. In all the problems the ground field \mathbf{k} is an algebraically closed field.

Problem 1:

(a) Give definitions of an affine variety, projective variety and quasi-projective variety.
(b) Give definitions of: (1) a function regular on an open subset U of a variety $X,(2)$ sheaf of regular functions on a variety X (i.e. the structure sheaf \mathcal{O}_{X}), (3) a rational function.
(c) Let $\phi: X \rightarrow Y$ be a morphism between (quasi-projective) varieties X and Y. Prove that ϕ is an isomorphism if and only if ϕ is a homeomorphism (for the Zariski topologies) and for each $p \in X$, the induced $\operatorname{map} \phi^{*}: \mathcal{O}_{\phi(p), Y} \rightarrow \mathcal{O}_{p, X}$ is an isomorphism of \mathbf{k}-algebras.

Problem 2: Let $\mathbf{k}=\mathbb{C}$. Consider the affine curve $X=V\left(y^{2}-x^{2}(x+1)\right)$ in \mathbb{A}^{2}.
(a) Show that the function y / x (restricted to X) is integral over the coordinate ring $\mathbf{k}[X]$, i.e. it satisfies a monic polynomial with coefficients in $\mathbf{k}[X]$.
(b) Show that y / x is not a regular function on X. More precisely, show that y / x does not coincide (on its domain of definition which is the Zariski open set $\{(x, y) \in X \mid x, y \neq 0\})$ with a polynomial $f(x, y)$ (restricted to $X)$. Hint: suppose $y / x=f(x, y)\left(\bmod y^{2}-x^{2}(x+1)\right)$ and arrive at a contradiction.

Problem 3: This problem is basically a straightforward exercise about line bundles. Recall that a line bundle L on a variety X is given by the information of a (Zariski) open cover $\left\{U_{\alpha}\right\}$ for X and a collection of functions $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathbf{k}^{*}$ (for any pair of open sets U_{α} and U_{β}) satisfying:
(1) $\forall \alpha, \beta, g_{\alpha \beta}=1 / g_{\beta \alpha}$.
(2) $\forall \alpha, \beta, \gamma, g_{\alpha \beta} g_{\beta \gamma}=g_{\alpha \gamma}$.

Then L is the disjoint union of the sets $U_{\alpha} \times \mathbb{A}^{1}$ modulo the equivalence relation that if $x \in U_{\alpha} \cap U_{\beta}$ then we identify the pair $(x, v) \in U_{\alpha} \times \mathbb{A}^{1}$ with the pair $\left(x, g_{\alpha \beta}(x) v\right) \in U_{\beta} \times \mathbb{A}^{1}$. In other words, the (scalar) functions $g_{\alpha \beta}$ are the change of coordinates from one trivializing coordiante chart $U_{\alpha} \times \mathbb{A}^{1}$ to another $U_{\beta} \times \mathbb{A}^{1}$. One shows that L can be given the structure of an algebraic variety such that for all α the inclusion maps $U_{\alpha} \times \mathbb{A}^{1} \rightarrow L$ are morphisms. The maps $(x, v) \mapsto x$ glue together to give the projection map $\pi: L \rightarrow X$. For each $x \in X$, the fiber $\pi^{-1}(x)$ is isomorphic to \mathbb{A}^{1} (but this isomorphism is not canonical).
(a) Recall that a (regular) section σ of L on X is a morphism (regular map) $\sigma: X \rightarrow L$ such that $\pi \circ \sigma=$ id. Show that in terms of the data $\left(\left\{U_{\alpha}\right\},\left\{g_{\alpha \beta}\right\}\right)$, a section σ is given by a collection of regular maps $\sigma_{\alpha}: U_{\alpha} \rightarrow \mathbb{A}^{1}$ such that $\sigma_{\beta}(x)=g_{\alpha \beta}(x) \sigma_{\alpha}(x)$ for any $x \in U_{\alpha} \cap U_{\beta}$.
(b) Let L be the tautological bundle on the projective space \mathbb{P}^{n}, i.e.:

$$
L=\left\{(x, v) \mid v \text { lies on the line representing } x \in \mathbb{P}^{n}\right\} \subset \mathbb{P}^{n} \times \mathbb{A}^{n+1} .
$$

Give a trivializing open cover $\left\{U_{\alpha}\right\}$ and change of coordinate functions $\left\{g_{\alpha \beta}\right\}$ for L.
(c) Show that the tautological line bundle has no nonzero sections.
(d) Let L^{*} be the dual line bundle to the tautological line bundle L. it is usually called the hyperplane bundle:

$$
L^{*}=\{(x, f) \mid f \text { is a linear function on the line representing } x\} .
$$

The map $\pi: L^{*} \rightarrow \mathbb{P}^{n}$ is $(x, f) \mapsto x$. The data of L^{*} is the same as L but with $g_{\alpha \beta}$ replaced with $1 / g_{\alpha \beta}$. Show that the space $\Gamma\left(\mathbb{P}^{n}, L^{*}\right)$ of global sections of L^{*}, i.e. all the regular sections of L^{*}, can be identified with the dual vector space $\left(\mathbb{A}^{n+1}\right)^{*}$.

Problem 4: Find the Hilbert polynomial of \mathbb{P}^{n} embedded in \mathbb{P}^{m} via the d-th Veronese embedding ν_{d}. Here $m=\binom{n+d}{d}-1$. Verify that the degree of the Hilbert polynomial is n. Also find the degree of the projective variety $\nu_{d}\left(\mathbb{P}^{n}\right) \subset \mathbb{P}^{m}$.

Problem 5:(Bonus) Consider the affine cubic curve

$$
y^{2}=x^{3}+a x+b,
$$

in \mathbb{A}^{2}. We will assume that char $\mathbf{k} \neq 2,3$. Let X be the projective variety which is the closure of this affine curve in \mathbb{P}^{2}. Let O be the point $(0: 1: 0)$ on X. Show that every divisor on X of degree 0 is equivalent to a divisor of the form $P-O$ for some $P \in X$. (Recall that two divisors are equivalent, denoted by \sim, if their difference is a principal divisor.) Hint: (1) Let $P, Q, R \in X$ lie on the same line ℓ on X. Show that the divisor $P+Q+R-3 O$ is a principal divisor, i.e. find a rational function $(A x+B y+C z) /(D x+E y+F z)$ whose divisor is $P+Q+R-3 O$. (2) For $R=(x, y) \in X$ let $R^{\prime} \in X$ denote the point $(x,-y)$. Use (1) to show that $R+R^{\prime}-2 O$ is a principal divisor. (We didn't define precisely the order of vanishing of a rational function f at a point on a curve in full generality, although we recall that if $f(x, y)$ is a rational function on the plane and X a smooth curve defined by one polynomial equation $g(x, y)=0$, the order of vanishing of f at a point a on X is the order of tangency of the zero locus of f and X at a, provided that they intersect, otherwise the oder of tangency is 0 .)

