MAT2810: Introduction to Algebraic Geometry

Take home Final Exam (April 26, 2015)

Kiumars Kaveh

Due: by 11:59 and 59 seconds am Tuesday noon April 28, 2015.

You only need to do the first 4 problems, although you will receive extra points for doing the 5th. In all the problems the ground field \mathbf{k} is an algebraically closed field.

Problem 1:

- (a) Give definitions of an affine variety, projective variety and quasi-projective variety.
- (b) Give definitions of: (1) a function regular on an open subset U of a variety X, (2) sheaf of regular functions on a variety X (i.e. the structure sheaf \mathcal{O}_X), (3) a rational function.
- (c) Let $\phi: X \to Y$ be a morphism between (quasi-projective) varieties X and Y. Prove that ϕ is an isomorphism if and only if ϕ is a homeomorphism (for the Zariski topologies) and for each $p \in X$, the induced map $\phi^*: \mathcal{O}_{\phi(p),Y} \to \mathcal{O}_{p,X}$ is an isomorphism of k-algebras.

Problem 2: Let $\mathbf{k} = \mathbb{C}$. Consider the affine curve $X = V(y^2 - x^2(x+1))$ in \mathbb{A}^2 .

- (a) Show that the function y/x (restricted to X) is integral over the coordinate ring $\mathbf{k}[X]$, i.e. it satisfies a monic polynomial with coefficients in $\mathbf{k}[X]$.
- (b) Show that y/x is not a regular function on X. More precisely, show that y/x does not coincide (on its domain of definition which is the Zariski open set $\{(x, y) \in X \mid x, y \neq 0\}$) with a polynomial f(x, y) (restricted to X). Hint: suppose $y/x = f(x, y) \pmod{y^2 x^2(x+1)}$ and arrive at a contradiction.

Problem 3: This problem is basically a straightforward exercise about line bundles. Recall that a line bundle L on a variety X is given by the information of a (Zariski) open cover $\{U_{\alpha}\}$ for X and a collection of functions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to \mathbf{k}^*$ (for any pair of open sets U_{α} and U_{β}) satisfying:

- (1) $\forall \alpha, \beta, g_{\alpha\beta} = 1/g_{\beta\alpha}$.
- (2) $\forall \alpha, \beta, \gamma, g_{\alpha\beta}g_{\beta\gamma} = g_{\alpha\gamma}.$

Then L is the disjoint union of the sets $U_{\alpha} \times \mathbb{A}^1$ modulo the equivalence relation that if $x \in U_{\alpha} \cap U_{\beta}$ then we identify the pair $(x, v) \in U_{\alpha} \times \mathbb{A}^1$ with the pair $(x, g_{\alpha\beta}(x)v) \in U_{\beta} \times \mathbb{A}^1$. In other words, the (scalar) functions $g_{\alpha\beta}$ are the change of coordinates from one trivializing coordiante chart $U_{\alpha} \times \mathbb{A}^1$ to another $U_{\beta} \times \mathbb{A}^1$. One shows that L can be given the structure of an algebraic variety such that for all α the inclusion maps $U_{\alpha} \times \mathbb{A}^1 \to L$ are morphisms. The maps $(x, v) \mapsto x$ glue together to give the projection map $\pi : L \to X$. For each $x \in X$, the fiber $\pi^{-1}(x)$ is isomorphic to \mathbb{A}^1 (but this isomorphism is not canonical).

- (a) Recall that a (regular) section σ of L on X is a morphism (regular map) $\sigma : X \to L$ such that $\pi \circ \sigma = \text{id.}$ Show that in terms of the data $(\{U_{\alpha}\}, \{g_{\alpha\beta}\})$, a section σ is given by a collection of regular maps $\sigma_{\alpha} : U_{\alpha} \to \mathbb{A}^{1}$ such that $\sigma_{\beta}(x) = g_{\alpha\beta}(x)\sigma_{\alpha}(x)$ for any $x \in U_{\alpha} \cap U_{\beta}$.
- (b) Let L be the *tautological bundle* on the projective space \mathbb{P}^n , i.e.:

 $L = \{(x, v) \mid v \text{ lies on the line representing } x \in \mathbb{P}^n\} \subset \mathbb{P}^n \times \mathbb{A}^{n+1}.$

Give a trivializing open cover $\{U_{\alpha}\}$ and change of coordinate functions $\{g_{\alpha\beta}\}$ for L.

- (c) Show that the tautological line bundle has no nonzero sections.
- (d) Let L^* be the dual line bundle to the tautological line bundle L. it is usually called the *hyperplane bundle*:

 $L^* = \{(x, f) \mid f \text{ is a linear function on the line representing } x\}.$

The map $\pi : L^* \to \mathbb{P}^n$ is $(x, f) \mapsto x$. The data of L^* is the same as L but with $g_{\alpha\beta}$ replaced with $1/g_{\alpha\beta}$. Show that the space $\Gamma(\mathbb{P}^n, L^*)$ of global sections of L^* , i.e. all the regular sections of L^* , can be identified with the dual vector space $(\mathbb{A}^{n+1})^*$.

Problem 4: Find the Hilbert polynomial of \mathbb{P}^n embedded in \mathbb{P}^m via the *d*-th Veronese embedding ν_d . Here $m = \binom{n+d}{d} - 1$. Verify that the degree of the Hilbert polynomial is *n*. Also find the degree of the projective variety $\nu_d(\mathbb{P}^n) \subset \mathbb{P}^m$.

Problem 5:(Bonus) Consider the affine cubic curve

$$y^2 = x^3 + ax + b,$$

in \mathbb{A}^2 . We will assume that char $\mathbf{k} \neq 2, 3$. Let X be the projective variety which is the closure of this affine curve in \mathbb{P}^2 . Let O be the point (0:1:0) on X. Show that every divisor on X of degree 0 is equivalent to a divisor of the form P-O for some $P \in X$. (Recall that two divisors are equivalent, denoted by \sim , if their difference is a principal divisor.) Hint: (1) Let $P, Q, R \in X$ lie on the same line ℓ on X. Show that the divisor P+Q+R-3O is a principal divisor, i.e. find a rational function (Ax + By + Cz)/(Dx + Ey + Fz) whose divisor is P + Q + R - 3O. (2) For $R = (x, y) \in X$ let $R' \in X$ denote the point (x, -y). Use (1) to show that R + R' - 2O is a principal divisor. (We didn't define precisely the order of vanishing of a rational function f at a point on a curve in full generality, although we recall that if f(x, y)is a rational function on the plane and X a smooth curve defined by one polynomial equation g(x, y) = 0, the order of vanishing of f at a point a on X is the order of tangency of the zero locus of f and X at a, provided that they intersect, otherwise the oder of tangency is 0.)