
Supporting Efficient Query Processing
on Compressed XML Files

Yongjing Lin � , Youtao Zhang � , Quanzhong Li � , Jun Yang �
� Computer Science Department � IBM Almaden Research Center

University of Texas at Dallas San Jose, CA 95120
Richardson, TX 75083

� Computer Science and Engineering Department
University of California at Riverside

Riverside, CA 92507

ABSTRACT
XML has been widely accepted as the de facto format for data

representation and exchange. However, it is also known for the
excessive information redundancy in its representation. While var-
ious compression schemes have been proposed and some of them
can support query processing over compressed files, it is usually
inevitable to perform partial (or full) data decompression which is
expensive and in some cases may dominate the query processing
time.

In this paper, we propose a new XML compression scheme based
on the Sequitur compression algorithm. By organizing the com-
pression result as a set of context free grammar rules, the scheme
supports efficient processing of XPath queries without decompres-
sion. The experimental results show that this scheme achieves com-
parable compression ratio as gzip while its query processing time
is among the best of existing algorithms.

Categories and Subject Descriptors
H.2.1 [Database Management] Logical Design
E.4 [Coding and Information Theory] Data Compression

Keywords
XML, Query processing, Data compression

1. Introduction
Over the years the self-descriptive eXtensible Markup Language

(XML) has been widely accepted as the de facto format to exchange
semi-structured data among different systems. However it is also
known for the excessive verbosity in its representation. The draw-
backs, such as consuming more storage, transmission bandwidth,
and computation power, can be serious in various scenarios, in par-
ticular, in the resource constrained embedded and mobile systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

XML compression has been recognized as an effective approach
for solving the above problem, and different compression schemes
have been proposed [5, 11, 6, 1, 3, 2, 9]. Targeting at maximiz-
ing size compression, XMill [5] was proposed to separate a XML
file into containers over which the gzip compressor (or customiz-
able compressors) are applied to achieve good compression ratios.
However, XMill does not support direct query processing. The
compressed result has to be decompressed before query process-
ing. Clearly this is not desirable when the XML file is large.

To support XML queries without full decompression, XGrind
[11] adopted a homomorphic compression scheme which preserves
the structure of original XML data. While queries can be evaluated
over the compressed file, the compression ratio is usually worse
than that of XMill or Gzip. A reverse arithmetic encoding scheme
was recently proposed in XPRESS [6]. It encodes the label paths
of XML data and applies diverse encoding methods depending on
the types of data values [6]. XPRESS needs to preprocess the entire
XML document which incurs large overhead when the XML data
is undergoing active changes. Some other proposed compression
schemes achieve fast query processing through partial decompres-
sion [3, 1]. For example, XQzip integrates a structure index tree
(SIT) in the compressed XML file. Tags and data values are di-
vided into blocks and then compressed using gzip. With the help of
SIT, the query processing engine can select a subset of data blocks
to decompress and process. It achieves better performance than
previous schemes e.g. XGrind. In XQzip, the decompression cost
usually dominates the query processing. With in-memory caching
of decompressed results, the cost may be amortized by consecu-
tive queries. Unfortunately, this is sensitive to the size of available
memory for storing decompressed data, the type of queries and also
the similarity of data to be processed by consecutive queries. In the
worst case, the decompression cost is still visible to each query.

In this paper, we proposed a new XML compression scheme –
XSeq which is adapted from the Sequitur algorithm [8], an existing
compression algorithm for compressing text strings. Similar to that
in XMill, XSeq first processes an input XML file and separates
its XML tokens into containers each of which is then compressed
using Sequitur. The compressed result also contains their necessary
indices with the help of which XPath queries [12] can be efficiently
evaluated. In summary, we made the following contributions.

� XSeq processesqueries directly over the compressed file with-
out full or partial decompression. By avoiding the decom-
pression cost, the processing performance is independent of

660

2005 ACM Symposium on Applied Computing

the distribution of query results in the file and also the data
correlation of consecutive queries.

� XSeq avoids the sequential scan of irrelevant compressed
data and only processes data values that are to be matched
by the given query. This feature is beneficial for queries that
process scattered data values in the XML file since only a
small portion of the file is touched and processed.

� We implemented and evaluated XSeq over a set of bench-
mark data sets. The results show that XSeq achieves compa-
rable compression ratio as gzip while the query performance
is among the best. In addition, the query performance is in-
dependent of the distribution of data values in the file.

The rest of the paper is organized as follows. The Sequitur algo-
rithm is introduced in section 2. We discuss XSeq and its support
for query processing in section 3. Section 4 presents the experi-
mental results. We conclude the paper in section 5.

2. The Sequitur Algorithm
The Sequitur compression algorithm [8] is a linear-time online

algorithm that forms a context-free grammar for a given string in-
put. Starting with a rule with the non-terminal symbol S at the left
hand side, the algorithm continuously fetches symbols from the in-
put and appends them to the right hand side of the starting rule.
Duplicate subsequences are checked during processing and a new
production rule is generated for each repeated subsequence if this
is not done before. After the new rule is generated, the repeated
subsequence is replaced by the left hand side non-terminal symbol
of the rule. In Figure 1, a new rule X is generated because “abc”
appears more than once. The compression result is a set of the
grammar rules. Alternatively, the result can be represented by a
directed acyclic graph (DAG) (Figure 1).

������

���	
��	

�	��		��������

���

�	��		��������

�

�

�

� � �

�

�
�
�
�

�

�
�

�

�
�
�

��������������

Figure 1: Sequitur Compression.
Two properties are ensured in the compressed grammar repre-

sentation [8].
� Diagram uniqueness: no pair of adjacent symbols appears

more than once in the grammar. If, by adding a new input
symbol, two adjacent symbols appear more than once in the
grammar, a new produce rule will be created to replace both
appearances. In the example, after we add the fifth input
symbol, we have the starting rule as follows.

���������	���

after adding the sixth “b”, we get “abcbab”. Since the sub-
sequence “ab” appears twice, it has to be replaced. We then
have:

����
���	

������

� Rule utility: every rule is used more than once. The num-
ber of times that a rule is used can decrease during the pro-
cessing. If this number is reduced to one, the rule will be

discarded. For example, after adding the seventh symbol in
Figure 1, we have ���������

����
��

������

Since rule Z now is used only once, it gets deleted and its
appearance in rule X is replaced by “bc”. That is,���������

���������

For string inputs, the Sequitur algorithm has the ability to achieve
comparable or better compression ratios than LZ family compres-
sion algorithms [8]. This is achieved from a distinct property of Se-
quitur: the compression result is organized as a set of context-free
grammar rules. Each non-terminal (NT) symbol can be expanded
only to one string of terminal symbols and this string is indepen-
dent of the location where the NT symbol appears. On the contrary,
the same value may represent different substrings in the LZ family
algorithms [13].

The context free property is also important for supporting ef-
ficient query processing over the compressed file. For example,
query processing requires the traversal of the DAG for desired val-
ues. If we meet a visited non-terminal node from a different path,
we can expect the exactly same result if that node is processed
again. We therefore can reuse the result from previous visit and
skip the scan of the node and its subtrees. Suppose we are looking
for “ab” in Figure 1, starting from the start symbol S and then X,
we find “ab” in X and mark X after scanning it. When following a
different path “Y

�
bX” to access X later on, we reuse the fact that

“ab” is contained in X and save the time/space of further process-
ing.

3. XSeq: Direct Query Processing on
Compressed XML Files

���

����

���

�	
��

�
���
�

���	���

�		

���	���
��

�		

���	���
��

������

������

������

�	
�����	��

�
��������

�������
�

�����

���������	
 �����	

�
���
�

�����

��	��

�
���
�

�����

���	���
�

�����

���	���
�
�����

! ! "

���������������

��
	�

��	����
�

��
�

�

������

Figure 2: Scheme Overview.

In this section, we first discuss the design motivation of XSeq.
We then present the organization of XSeq and discuss how XPath
queries are processed with the compressed format.

3.1. Motivations
To achieve better compression ratios, our first design decision is

to separate tags and data values into different containers, which is
similar to that in XMill [5]. By grouping XML tokens that are of the
same type, separation based compression algorithms increase the
data similarity in each container and achieve better data compres-
sion than others. For example, a XML file is usually compressed to
20% of its original size using XMill. With XGrind, the number is
about 50%. The compressed file size of XGrind almost doubles the
result of XMill.

661

However, separating a XML file has negative impacts on query
processing. Since typical XPath queries require the match for both
tags and concrete data values, the separation complicates the search
for the correct value in different containers especially if the con-
tainer is compressed. It is expensive to decompress the whole con-
tainer and search only for few values. While recently XQzip can
speed up the processing through specially designed indices and also
through partial decompression, the decompression cost is still quite
significant. In cases where the data values to be processed are scat-
tered in the XML file, it is hard to amortize the decompression cost.

In this paper we took a similar approach as XQzip but tried to
avoid decompression cost in the query processing. This is achieved
through the context free property of Sequitur algorithm. As the data
is stored on leaf nodes of the DAG graph, we only need to go from
the root and scan nodes on the path to these leaves. Comparison can
be done on these nodes directly without decompression and irrele-
vant nodes can be skipped without further processing. Decompres-
sion is needed only when we want the decompressed representation
of query results.

To correlate the data values stored in different containers, we
built a structural index through which each data value can be quickly
located in the container without decompression. We kept the in-
dices within the compressed file and had them loaded into the mem-
ory before processing the rule contents.

3.2. Compressing XML Files with Sequitur
An overview of XSeq is shown in Figure 2. The original input

XML file is first parsed using SAX parser. Similar to that in XMill,
XML tokens are assigned to different containers with the tags and
attributes sent to the structure container. Each container is then
compressed using Sequitur algorithm producing a set of context
free grammar rules. The compressed file contains both the rules for
these containers and the necessary indices.

Three types of indices are stored in the compressed file: the file
header, the index for the structure container, and the index for each
data value container. They are defined in Figure 3. The header
index contains two entities: one is a list of pointers each of which
points to the entrance of one container in the file. The other is a
mapping table between each tag and its assigned tag code. After
assigned the tag code, each tag appearance is replaced by this code
in the structure container (container number 0) e.g. T2 is assigned
to “title” and therefore all appearances of “title” will be replaced
by T2.

The second type is used for the structure container while the third
type is used for each of data value containers. Their formats are
briefly described as follows (Figure 3). A “rule count” field is used
to specify the number of rules in its associated container. Next,
there are an array of entries that specify the summary information
of each rule in the container. The summary has a “rhs count” field
which specifies the number of right hand side rule items. The rest
of the fields in structural index specifies the tags appear in the ex-
panded string of each rule (non-terminal symbol), together with
the frequency of each appeared tag. These indices are used for fast
query processing. We will discuss their usage in the next section.
The summary of each rule is generated when the compressed file
is created. There is a “value count” field in the index for each data
value container. It specifies how many starting positions of XML
data values in that rule. It differs from “rhs count” in that an XML
data value may be a text string and thus consists of multiple RHS
items. For the simplicity of discussion, we skip it and assume all
values are of the unit length.

Instead of the actual address in the file, we store the number of
RHS items of each rule. For example, we store “2” for rule R1 as

it has 2 RHS items. The compressed file stores the grammar rules
sequentially in the file and thus the starting position of a produc-
tion rule can be located by counting the number of preceding RHS
items. The actual address is maintained in the memory and calcu-
lated from this index. When we are to access a new container, we
load the rule index into the memory and generate the actual address
for each rule.

3.3. Processing Path Queries in Compressed
XML Files

In this section we discuss the data correlation of different con-
tainers and show how to process XPath queries in XSeq.

As we discussed, a typical XPath query contains the matching re-
quests for both tags/attributes and data values, for example “/dblp/in-
proceedings[year=2003]”. We need to compare tags “dblp” and
“inproceedings”, and also go to the year container and compare
the corresponding value to see if it is 2003. When tags and data
values are separated into different containers, we need to find the
exact item in a container to match. For example, we may have a
list of year values in the year container and there are multiple paths
reaching “2003”, each of which indicates a different location. The
challenge is that after skipping a series of tags in structure match-
ing, e.g. skipping a “injournal” node and all its associated year
values, we still need to accurately find the right year value in the
year container.

In XSeq we use position counters to correlate the corresponding
positions in different compressed containers. For example, if tag
“year” has already appeared 99 times, and “ ����� �����
	����� ��
��� ����� ” is the 100th appearance. We can then go to the year con-

tainer and directly compare the 100th value and skip all other val-
ues. By doing this we need two consecutive processing steps. The
first step decides to match the 100th value while the second step
jumps to the 100th value in the compressed year container without
decompression.

3.3.1 Correlating Values in Different Compressed Con-
tainers

The first step is done with the help of structure index. The struc-
ture index stores a small array for each grammar rule of the com-
pressed structure container. It basically summarizes the expanded
string of its associated non-terminal symbol. In Figure 3, the struc-
ture index indicates that R1 has 3 different tags i.e. T2, T3, T4. T3
has two appearances while T2 and T4 have one appearance each.
As the expanded string of R1 is “T2 T3 C1 / T3 C1 / T4 C2 / /”
(“/” indicates the end of a tag), this small array exactly catch the
summary of R1.

With the help of the structural index, we can skip scanning a pro-
duction rule if the index indicates no matching data in the expanded
rule. For example, if we want to search for T4 in rule R1, we skip
two R2s as the summary of R2 indicates T4 does not appear in R2.
By skipping R2, it means we do not need to load the corresponding
content of R2 and all the data (rules) under R2. On the other hand,
if we want to locate T4 in C2, we should match the first value as no
T2 has been skipped.

3.3.2 Counter Based Matching in Compressed Con-
tainers

Given a position value, the second step is to quickly locate the
value in a data container. Here we assume each data value has one
unit of length. By counting the number of RHS items, we can jump
to the right place to compare. For example, suppose we are to fetch
the 100th value in a container and we have “ABC” where A and B
contain 60 and 20 values respectively. We can skip A and B, go

662

��

��

��

��

��

��

��

��	�
����	���
������	�
����	������������������������������� � �� �
�� ����� � �� �
�
���������� � �� �
�� ����� � �� �
���������������� � �� �
�� ����� � �� �
�

�� � �� �
�� ����� � �� �
��������������������� � � �������
��������������� � � ���������������������������	�
����	���
�������	�
����	����������������������������

���	

	��	

������	

�������	

����

�������	

�������

����

�������	

�����	�

�

�	�����

����	�����

��������������������� �!�

�����		���"��� �!�

������������������� �!�

����	������������������� �!#

�

$$

��

%

�

!���

!���

!#��

!��������&

�
�

!��������!#����&��&

!����

!�����&

��

��

��

��

#

% $$

�� � �

�����������������

���

����

�� � �

� �

�� ����

��

��

��

�

$$

� �

���'����(

��)�'

������������	*+��)�,

������������	*�����-

�������������,

����������������������*�����-

����������������������"*�����-

����������������������,

��������"-

���������	����	*�����-

����������������.����"*�����'/��"*�����0-

������.���	*�����'�/��	*�����0-

.

����������*+��)�,

������������	*�����-

�������������,

����������������������*�����-

��������������������1���	*�����-

������.���	*�����'�/��	*�����0-

.

�������	��	�,

������������������	*�����-

�����������	�����	�/�������	*�����0-

�������������"*���-

����������2���"/��"*���0-

.

������	

���)

����

���)

Figure 3: An XML example.

directly to C, and search for the 20th value (100-60-20=20) in rule
“C
�

...”.
For data values that are not of unit length, we use “value count”

to decide if a non-terminal symbol and its associated data should
be skipped. The “rhs count” here is used to locate the entrance of
a rule. As we may load only a small subset of rules in a container,
the “rhs count” and “value count” provide the power to randomly
locate the entrance of a rule and also its length.

4. Experimental Results

4.1. Settings
Benchmark Size(MB) Depth Tags
DBLP 133.9 6 43
XMark 116.5 11 85
Shakespeare 7.6 6 23
SwissProt 114.8 5 101

Figure 4: XML Benchmarks.

To evaluate the performance of XSeq, we implemented the pro-
posed compression algorithm and compared the results to XMill,
XGrind, and XQzip. The experiments were performed on a Red-
hat Linux 7.0 with Pentium IV 2.0GHz processor and 256 MBytes
main memory.

We collected a set of four representative benchmarks whose char-
acteristics are summarized in Figure 4. DBLP contains biblio-
graphic information on major computer science journals and pro-
ceedings. XMark contains XML data generated from XMark project
[7]. Sharespeare [10] is the collection of plays of Shakespeare.
SwissProt [4] is a protein sequence database. Three of them are
of large size (over 100MB) while XMark and Swissprot have more
different tags (around 90).

4.2. Compression Ratio
The compression ratio is defined as

������� � ���	�	
 ��������
 ������� �	
�� � ��� ������� � ���	� ��� ���! � ��� �
�	
�� � ���"� �
$#�
 � ��% ���! � ��� �

DBLP 84.64 55.93 81.71 79.81
Xmark 74.14 55.07 67.3 81.05
Shakespeare 74 52.49 72.06 66.83
SwissProt 92.8 61.11 87.68 87.86

81.395 56.15 77.1875 78.8875

0

10

20

30

40

50

60

70

80

90

100

DBLP Xmark Shakespeare SwissProt

C
o

m
p

re
ss

io
n

 R
at

io

XMill XGrind Gzip XSeq

Figure 5: Compression Ratio.

The compression ratios of different benchmarks are summarized in
Figure 5. The compressed XSeq file contains the storage for both
the rule sets and the indices.

On average, we achieved 81.4% compression ratio for XMill,
56.2% for XGrind, 77.2% for Gzip and 78.2% for XSeq. From
the results, we found while XMill has the best compression ratios,
XSeq performs comparably well. The comparession ratio is about
the same as that using gzip. Three benchmarks have comparable
results as Gzip. XMark achieves better compression ratio using
XSeq mainly due to its regularity of data values. As reported in
[1], XQzip has comparable compression ratios as XMill when the
indices are not included and is usually worse than gzip when having
the indices included.

4.3. Compression Time
Figure 7 summarizes the compression time results. XSeq has

the worst compression time. In the worst case (DBLP), it can be
14 times slower than XMill while on average it is about to double
the time of XGrind. This long compression time is mainly due to
the hashing cost in the processing of each input item [8]. While
the initial compression is slow, XSeq supports online incremental
data modifications. This is mainly due to the property that the rule
set is context free. In the case that part of the data values have
been removed or changed, XSeq just needs to update the grammar
rules that contain these values. It updates these nodes as well as
the indices on the path to the starting symbol. Modifications in the

663

Benchmark Path Filter Index Data XSeq XGrind Result Size
(sec) (sec) (sec) (sec) (sec) (sec) count (KB)

DBLP XQ1 0.251 0.000 0.000 0.150 0.464 13.978 212272 2298
XQ2 0.261 0.067 0.058 0.494 1.575 7.319 1494 751
XQ3 0.261 0.079 0.336 2.748 4.161 47.319 54828 12990
XQ4 0.543 0.016 0.000 0.034 0.732 – 140 3.5

XMark XQ1 0.100 0.000 0.000 0.003 0.145 3.171 6537 62
XQ2 0.112 0.002 0.047 0.010 0.224 3.047 1649 88
XQ3 0.105 0.018 0.085 0.120 0.451 – 6037 1114
XQ4 0.151 0.013 0.000 0.002 0.234 – 161 3.9

Swissprot XQ1 0.356 0.000 0.000 1.044 1.526 23.042 344814 8362
XQ2 0.203 0.056 0.415 0.109 0.883 – 49993 1000
XQ3 0.168 0.030 0.232 0.337 1.120 – 1098 1153
XQ4 0.809 0.189 0.000 0.002 1.145 – 36 1.4

Shakespeare XQ1 0.023 0.000 0.000 0.016 0.047 1.826 30986 266
XQ2 0.023 0.017 0.000 0.081 0.198 0.508 256 46
XQ3 0.023 0.016 0.000 0.315 0.459 2.8400 180 23
XQ4 0.030 0.002 0.000 0.001 0.045 – 60 0.5

Figure 6: Performance Evaluation Results.

original XML files can be localized without cascading update of
irrelevant data values.

DBLP 11 62.2 10 151.9
Xmark 15 60.4 13 211.7
Shakespeare 1 3.2 1 9.5
SwissProt 9 64.4 6 111.7
Treebank 7 40.6 8 71.9

0

50

100

150

200

250

DBLP Xmark Shakespeare SwissProt

C
o

m
p

re
ss

io
n

 T
im

e
(s

ec
)

XMill XGrind Gzip XSeq

Figure 7: Compression Time.

4.4. Query Processing Time
We evaluated XSeq using four representative queries, XQ1 through

XQ4, which are all listed in Appendix A. For each benchmark,
XQ1 is a partial matching path expression. XQ2 is a path query
with an exact-match or partial-match predicate on the result nodes.
XQ3 is similar to XQ2 but it uses a range predicate. XQ4 extends
XQ2 and XQ3 with multiple, and nested predicates. We collect de-
tail query processing statistics about XSeq in Figure 6. The evalua-
tion of each query consists of 4 parts, path-time, filter-time, index-
time, and data-time. Path-time is the time taken to select the nodes
that match the given path. Filter-time is for filtering out the nodes
that do not match the predicates. Index-time and data-time give
the time taken to retrieve the index and the data value of the re-
sult nodes respectively. We also give out the total querying time
in column of XSeq, which is a little bit larger than the sum of the
path, filter, index and data time. This is due to the fact that the total
query time includes the time taken to parse the input query and to
load the index information of the compressed file. We also compare
it to XGrind. As XGrind does not support these queries directly,
we made slight changes and then collect the processing time. We
skipped the compilcated queries in XGrind as they require signif-
icant changes and the new code may impose performance impacts
not related to XGrind. From the results we observed that XSeq per-
forms constantly better than XGrind, with a performance speedup
ranging from 2 to 20. The number of query results and the size are
also recoded in the last two columns.

The performance comparison with recently proposed XQzip al-
gorithm is shown in Figure 8. To compare with XQzip, we col-

lect the XSeq results for the same queries used in [1]. As we use
comparable setting and data source, we use the numbers of XQzip
reported in [1] directly. We are aware of possible impacts due to
detailed setting difference. We therefore performed additional ex-
periments (discussed in the next section) to study the observation
from this initial comparison.

As shown in Figure 8, XSeq and XQzip achieve comparable
query performance for most queries. However, there are queries
that XSeq performs better than XQzip while the rest XQzip is better
than XSeq. We suspect that it is due to the sensitivity of different
compression schemes with different query types, and thus would
like to have a more detailed study of it.

Benchmark XSeq XQzip [1]
(sec) (sec)

DBLP Q1 0.327 0.381
Q2 1.114 0.345
Q3 2.832 9.541

XMark Q1 0.102 0.913
Q2 0.134 0.934
Q3 0.117 3.411

Shakespeare Q1 0.035 0.037
Q2 0.079 0.038
Q3 0.203 0.039

Figure 8: Comparison with XQzip (Q1,2,3 are the same as
those in [1].

4.5. Processing Different Queries
To study the sensitivity of query performance in different schemes,

we designed a study as follows. Given an uncompressedfile, we di-
vided the file into 10 segments and then randomly selected 1K and
10K values to process. We also varied the coverage with 10% in-
crement. For example in Figure 9, for coverage 40% and count
number 1K, these 1000 values were selected randomly from 4 out
10 segments, for example they can be 10-20%, 30-40%, 50-60%
and 60-70% with the total coverage 40%. Each point in the fig-
ure is averaged from 10 runs. The compressed file of XSeq is as
discussed above. The compressed file for XQzip follows the for-
mat in [1] – either a data block contains 2000 different values or
its size reaches 2 Megabytes. The number for XSeq contains both
the querying time and the time to process the input. The number
for XQzip contains the input processing, and decompression cost
only. That is, we optimistically assumed the query processing time

664

in XQzip is negligible.
FIgure 9 shows the results of processing “year” and “booktitle”

containers respectively on DBLP data set. From the results, we ob-
served that the processing time of partial decompression algorithms
such as XQzip is almost linear to coverage variation. By processing
10K paths, the processing time changes from 5ms to 21ms (“year”
result) when these paths are distributed within 10% and 100% of
the file respectively. The performance of the latter is much worst
because XQzip needs to decompress more compressed chunks. We
do not consider buffering/caching across different queries due to
the fact that consecutive queries may fall into different containers.
In addition, the size of main memory buffers is limited when com-
pared to that of uncompressed XML data.

On the other hand, the processing time in XSeq is almost con-
stant for the change of data coverage – it changes from 5ms to 9ms
for querying year container. This is due to the fact that there is no
decompression involved in the processing. Varying coverage has
less impacts since XSeq always finds and processes the individual
compressed value directly.

Another observation that we made from the graph is that XSeq is
more sensitive to the number of processed values. This is because
we adapt a less optimized version in query processing, e.g., we
process a visited data value node even it has been visited previously.
In the future, we will study further improvements with intermediate
result caching.

Year

0

5

10

15

20

25

10 20 30 40 50 60 70 80 90 100

Coverage (%)

T
im

e
(m

se
c)

XSeq: 10K
XSeq: 1K
XQzip: 10k
XQzip: 1K

Booktitle

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

Coverage (%)

T
im

e
(m

se
c)

XSeq: 10K
XSeq: 1K
XQzip: 10K
XQzip: 1K

Figure 9: Query Processing with Different Coverage.

5. Conclusions
In this paper we proposed XSeq, an XML compressor that sup-

ports efficient query processing on compressed XML files without
any decompression. Adapted from the on-line, linear-time Sequitur
compression algorithm, XSeq compresses an input XML file into a
set of context free grammar rules and their indices. The experimen-
tal results show that XSeq achieves comparable compression ratios
of gzip and comparable query performance of XQzip. The results
also reveal that its query processing is independent of data distri-
bution and coverage. We expect the wide application of XSeq in
resource constrained environments and in the processing of queries
that access scattered data values in large XML files.

6. REFERENCES
[1] J. Cheng, and W. Ng, “XQzip: Querying Compressed XML using

Structural Indexing,” In EDBT 2004, LNCS 2992, 2004.
[2] A. Arion and et. al. “XQueC: Pushing Queries to Compressed XML

Data,” In Proceedings of VLDB (Demo), 2003.
[3] P. Buneman, M. Grohe, and C. Koch, “Path Queries on Compressed

XML,” In Proceedings of the 29th VLDB Conference, Berlin, Germany,
2003.

[4] M. F. Fernandez and D. Suciu, “Optimizing Regular Path Expressions
Using Graph Schemas,” In Proceedings of the 14th IEEE International
Conference on Data Engineering (ICDE), pages 14-23, Orlando,
Florida, USA, 1998.

[5] H. Liefke, and D. Suciu, “XMill: An Efficient Compressor for XML
Data,” In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 153-164, May 2000.

[6] J.K. Min, M.J. Park, and C.W. Chung, “XPRESS: A Queriable
Compression for XML Data,” In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, San
Diego, CA, 2003.

[7] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, R.
Busse, “XMark: A Benchmark for XML Data Management,” In
Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 974-985, Hong Kong, China, August 2002.

[8] C.G. Nevill-Manning, and I.H. Witten, “Linear-time, incremental
hierarchy inference for compression,” in Proceeding of the Data
Compression Conference (DCC). Snowbird, UT, 1997.

[9] M. Neumuller, and J. N. Wilson, “Improving XML Processing using
Adapted Data Structure,” in LNCS 2593, 2003.

[10] Shakespeare, http://www.navdeeps.com/shakespeare/, Data Set,
2001.

[11] P. M. Tolani and J. R. Haritsa, “XGRIND: A Query-friendly XML
Compressor,” In Proceedings of 18th International Conference on
Database Engineering, February 2002.

[12] World Wide Web Consortium. XML Path Language (XPath) Version
1.0. http://www.w3.org/TR/xpath/, W3C Recommendation 16
November 1999.

[13] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Com-
pression,” In IEEE Transactions on Information Theory, May 1977.

Appendix A:
Queries used in Performance Evaluation
DBLP:
XQ1: //inproceedings//booktitle
XQ2: /dblp/inproceedings[booktitle$=”SIGMOD”]
XQ3: /dblp/inproceedings[year ��� ”1996” & year ��� ”2000”]
XQ4: /dblp/inproceedings[[booktitle=”SIGMOD Conference”]

&[year ��� ”1996”&year ��� ”2000”]&[author/$c � 3]]/@key

XMark:
XQ1: //people//person//education
XQ2: /site/people/person/profile[education=”College”]
XQ3: /site/people/person[profile/@income ��� 50000

& profile/@income ��� 10000]
XQ4: /site/people/person[[//@income ��� 50000 & //@income
��� 10000]& [address] & [name$=”G”]/emailaddress

Swissprot:
XQ1: //Entry//Descr
XQ2: /root/Entry/Mod[@type=”Create”]
XQ3: /root/Entry[900 ��� @seqlen ��� 800]
XQ4: /root/Entry[[Descr?=”PROTEIN”]&[900 ��� @seqlen
��� 800]&[org/$c ��� 5]]/Species

Shakespeare:
XQ1: //PLAY/ACT/SCENE/SPEECH/SPEAKER
XQ2: //PLAY/ACT/SCENE/SPEECH[SPEAKER?=”ANTONY”]
XQ3: /PLAYS/PLAY/ACT/SCENE/SPEECH[”MARK ANTONY”
��� SPEAKER ��� ”TROILUS”]

XQ4: /PLAYS/PLAY/ACT/SCENE/SPEECH[[STAGEDIR$=”Enter”]
&”MARK ANTONY” ��� SPEAKER ��� ”TROILUS”]
&[line/$c � 2]]/SPEAKER

665

