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Abstract 

We propose VAriable Length Value Encoding (VALVE) 

technique to reduce the power consumption in the off-chip 

data buses. While past research has focused on encoding 
fixed length data values to reduce the transition activity in 

the data buses, our proposed scheme is capable of detecting 

and encoding variable length bit patterns in the data values. 

VALVE also does not require prior knowledge of input data 

and uses just one external control signal 

We evaluate our proposed scheme using a large 
spectrum of benchmarks and we achieve an energy 

reduction of 58% on an average and up to 75% on some 

benchmarks. We also analyze the performance penalty 

incurred due to the codec delay, which is found to be 0.45% 

of the total program execution time. We find that VALVE 
requires a minimal area of 0.0486 mm2, which can be easily 

implemented with in a memory controller.  

1. Introduction 
Power consumption in the bus drivers is in direct

proportion to the product of the number of signal transitions, 

at each cycle, and the line capacitance. Bus encoding 

schemes are techniques that reduce the bus power 

consumption by reducing the number of transitions on the 

bus. The overhead associated with encoding bus values is 

found to be negligible compared to the energy saved during 

off-chip transmission [8] . 

Frequent Value Encoding (FVE)[9] is a data bus 

encoding scheme that employs a k-bit, k-entry table to store 

previously seen data values, where k is the width of the data 

bus (32 in this case). During the first occurrence of a data 

value, the codec stores the data value in its table and sends 

the value unencoded. For subsequent occurrences of the data 

value, the codec sends a one-hot code instead of sending the 

entire data value. One-hot code denotes a value whose 

binary representation has a high value in only one of the bit 

positions.  

A full match in a data bus encoding scheme is when all 

the k-bits of an incoming data value matches with the 

corresponding bits of the stored data value. In a partial 

match event only a small number of the k bits do not match. 

Our analysis has shown that the occurrence of partial match 

events is three times more frequent than that of full match 

events. We propose VAriable Length Value Encoding 

(VALVE), a scheme capable of encoding both full matches 

and variable length partial matches in data streams. VALVE 

provides up to 75% reduction in energy for some 

applications and 58% energy savings on an average over 

unencoded data. 

2. VALVE Design 
VALVE uses Content Addressable Memories (CAMs) to 

store a finite set of table entries at the encoder and decoder 

ends. Each CAM table-entry consists of a variable-width bit 

pattern and a fixed width code. A VALVE table segment 

consists of a group of table-entries that store patterns of the 

same width.  VALVE uniquely maps each bit incoming 

pattern to one of the available codes stored in the table. The 

bit-patterns are inserted into CAMs during the first 

occurrence of the databus value. For subsequent occurrences 

of the same value (or its portion), VALVE sends the 

corresponding unique code instead of sending the data.  

VALVE asserts an external control signal whenever 

encoded values are sent on the bus wires. The fixed width 

code is always sent on a predetermined set of bus wires. In 

order to ensure integrity of the encoding/decoding 

operation, the width of the encoded portion should be 

greater than or equal to that of the code width. This ensures 

that the remaining bus wires are adequate to send the 

unencoded portion of the data. 

In Figure 1, we show the block diagram of VALVE 

encoder that can encode bit patterns of width 32-bits, 24-bits 

and 16-bits. For every data value masks are applied to 

extract the 32, 24 and 16 bit patterns. These bit patterns are 

then looked up in the appropriate segments of the VALVE 

table. In the event of a hit in multiple segments, the segment 

selector picks the hit code from a segment with the largest 

segment-mask (code[hit_index] in Figure 2). The k-bit code 

from the hit location constitutes the upper k-bits of the 

current data bus value. The complement of the hit segment’s 

mask is logically ANDed with the data value in order to get 

the low order bits of the encoded data bus value. The code is 

ORed with the low order data bits and the final 32-bit value 

is sent on the data bus..  
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Figure 3 shows a VALVE decoder with three segments of 

widths 32-bits, 24-bits and 16-bits respectively. The upper 

k-bits of the data-bus-value contain the code if the data 

value is encoded. Upon receiving an encoded data bus 

value, the decoder searches for the upper k-bits in its 

VALVE tables. In the event of a hit, the VALVE table 

returns a data value associated with the search code. This 

returned data value constitutes the high-ordered bits of the 

decoded data value. The complement of the hit segment’s 

mask is applied to the current data bus value in order to 

obtain the lower order bits of the decoded data value. When 

the external encode signal is low, the decoder interprets the 

valie “as-is”.  

3. Experimental Setup 
We implemented our encoder in the sim-outorder

simulator in the Simplescalar toolset [1]. Our test programs 

consisted of 23 benchmarks from the MediaBench [5], 

NetBench [6], MiBench[4], benchmark suites and four 

applications from SPECINT2000 [7].  

For SPECINT applications, we fixed the L1 and L2 data 

cache sizes at 64KB and 512KB respectively.  For rest of 

the embedded system applications, we evaluated L1 data 

caches of the following sizes – 1KB, 2KB, 4KB and 8KB. 

For each of these cache configurations, we fixed the block 

size, on-chip latency, off-chip latency and data bus width to 

be 32 bytes, 1 cycle, 100 cycles and 32-bits respectively. 

The off-chip data value in our simulation consists of both 

instruction and data values. 

We use a bus power model similar to the one discussed 

by [2]. Although estimating the energy used in the off-chip 

interconnects is difficult, we can reasonably approximate 

the capacitance for the bus using the formula:

Cbus = Cmetal * No. of Bus lines 

In this expression Cmetal is the capacitance of the metal 

interconnect for each bus line. Using the numbers given in 

[2], it is estimated to be 20pF. Cbus gives the effective 

capacitive load to be driven during a bus transaction. We 

calculate the total bus energy per cycle using the following 

formula: 

dec
Lr

total E
VCT

E ++=
cyclesof#

}**{
E

2

enc

where,  Tr = number of transitions in the off-chip bus
CL = Load capacitance of the off-chip bus line.
V  = Supply voltage. 

Parameters used for the calculation are:  CL = 20pF and V = 

3.3 Volts. 

4. Results and Discussion 
We compare our scheme with frequent value encoding 

(FVE) scheme, which is known to work best among the 

existing data encoding schemes.     Figure 4 shows the 

percentage reduction in energy for FVE and VALVE 

scheme while using an L1 data cache of size 4KB. The 

SPECINT applications shown in the graph used an L1 cache 

of size 64KB and an L2 cache of size 512KB.  We find that 

for almost all the benchmarks, our scheme provides extra 

energy savings of 6% to 20% over FVE scheme. Pointer-

intensive applications like mcf and parser have extensive 

Figure 1 shows a VALVE encoder with three segments of 

32, 24, and 16-bit width. The segment selector gives high 

priority to segments with larger bit width (32 in this case). 

     VALVE encoder 

1. For each data value do

2. If hit in valve table then

3. encode signal = 1 

4. current data bus value = code[hit_index] OR

                      (complement(mask) AND data value)

5. else

6. encode signal = 0 

7. current data bus value = data value

8. insert-in-valve-table ( data value )

9. end if

10. end for

Figure 2 shows our VALVE encoding algorithm. Each 
incoming data is encoded based on a hit in VALVE table; 

otherwise it is sent unencoded. 

Figure 3 shows a VALVE decoder with three segments of 

32, 24, and 16-bit width. The selection logic selects the 

proper segment and decodes the final 32-bit value. 
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partial matches in the MSBs and hence, VALVE offers 

nearly 20% energy improvement over FVE for such 

programs. While in some of the benchmark such as epic and 

sha, FVE performs worst than the unencoded data; our 

scheme provides an energy saving of more than 20%. Table 

1 shows the percentage reduction in energy for different 

cache configurations. As we can see from the table that, as 

we increase the cache size, the energy saving reduces. This 

may be due to reduction in the number of repeated bit-

patterns.  On an average, the partial data segments 

accounted for 73% of the total segment hits. 

On average, VALVE incurs 0.06%, 0.29%, and 0.76%, 

performance penalty with codec delay of 2 cycles for 

MiBench, MediaBench, and NetBench respectively. We 

evaluated the area requirement for VALVE codec and found 

that it could be implemented with a minimal area of 0.0486 

mm
2
.

5. Conclusion 
VAriable Length Value Encoding (VALVE) technique 

minimizes the energy consumption in the off-chip data 

buses by encoding and decoding variable width repeated bit-

patterns. We measure the energy consumed by the codec 

and evaluate the reduction in off-chip bus energy. VALVE 

provides up to 75% reduction in energy for some 

applications and it yields 58% reduction in energy on an 

average, whereas it provides an average energy savings of 

16% over FVE scheme. VALVE provides this significant 

energy savings at the expense of a very small performance 

overhead. We find that our codec can be implemented with 

a minimal area of 0.0486 mm
2
.
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    Figure 4 shows the percentage reduction in total energy (including codec’s energy) for all applications. 

(L1cache of 4KB) 

Table 1 shows the average percentage reduction in 
energy for different cache configurations. 

Cache size FVE VALVE 

1KB 44.94 59.50 

2KB 40.88 58.89 

4KB 40.87 57.14 

8KB 40.62 56.53 
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