
VALVE: Variable Length Value Encoder for Off-Chip Data Buses.

Dinesh C. Suresh, Banit Agrawal
*
, Walid A. Najjar and Jun Yang

Department of Computer Science and Engineering, University of California, Riverside
*
Department of Computer Science and Engineering, University of California, Santa Barbara

dinesh@cs.ucr.edu, banit@cs.ucsb.edu, {najjar, junyang}@cs.ucr.edu

Abstract

We propose VAriable Length Value Encoding (VALVE)

technique to reduce the power consumption in the off-chip

data buses. While past research has focused on encoding
fixed length data values to reduce the transition activity in

the data buses, our proposed scheme is capable of detecting

and encoding variable length bit patterns in the data values.

VALVE also does not require prior knowledge of input data

and uses just one external control signal

We evaluate our proposed scheme using a large
spectrum of benchmarks and we achieve an energy

reduction of 58% on an average and up to 75% on some

benchmarks. We also analyze the performance penalty

incurred due to the codec delay, which is found to be 0.45%

of the total program execution time. We find that VALVE
requires a minimal area of 0.0486 mm2, which can be easily

implemented with in a memory controller.

1. Introduction
Power consumption in the bus drivers is in direct

proportion to the product of the number of signal transitions,

at each cycle, and the line capacitance. Bus encoding

schemes are techniques that reduce the bus power

consumption by reducing the number of transitions on the

bus. The overhead associated with encoding bus values is

found to be negligible compared to the energy saved during

off-chip transmission [8] .

Frequent Value Encoding (FVE)[9] is a data bus

encoding scheme that employs a k-bit, k-entry table to store

previously seen data values, where k is the width of the data

bus (32 in this case). During the first occurrence of a data

value, the codec stores the data value in its table and sends

the value unencoded. For subsequent occurrences of the data

value, the codec sends a one-hot code instead of sending the

entire data value. One-hot code denotes a value whose

binary representation has a high value in only one of the bit

positions.

A full match in a data bus encoding scheme is when all

the k-bits of an incoming data value matches with the

corresponding bits of the stored data value. In a partial

match event only a small number of the k bits do not match.

Our analysis has shown that the occurrence of partial match

events is three times more frequent than that of full match

events. We propose VAriable Length Value Encoding

(VALVE), a scheme capable of encoding both full matches

and variable length partial matches in data streams. VALVE

provides up to 75% reduction in energy for some

applications and 58% energy savings on an average over

unencoded data.

2. VALVE Design
VALVE uses Content Addressable Memories (CAMs) to

store a finite set of table entries at the encoder and decoder

ends. Each CAM table-entry consists of a variable-width bit

pattern and a fixed width code. A VALVE table segment

consists of a group of table-entries that store patterns of the

same width. VALVE uniquely maps each bit incoming

pattern to one of the available codes stored in the table. The

bit-patterns are inserted into CAMs during the first

occurrence of the databus value. For subsequent occurrences

of the same value (or its portion), VALVE sends the

corresponding unique code instead of sending the data.

VALVE asserts an external control signal whenever

encoded values are sent on the bus wires. The fixed width

code is always sent on a predetermined set of bus wires. In

order to ensure integrity of the encoding/decoding

operation, the width of the encoded portion should be

greater than or equal to that of the code width. This ensures

that the remaining bus wires are adequate to send the

unencoded portion of the data.

In Figure 1, we show the block diagram of VALVE

encoder that can encode bit patterns of width 32-bits, 24-bits

and 16-bits. For every data value masks are applied to

extract the 32, 24 and 16 bit patterns. These bit patterns are

then looked up in the appropriate segments of the VALVE

table. In the event of a hit in multiple segments, the segment

selector picks the hit code from a segment with the largest

segment-mask (code[hit_index] in Figure 2). The k-bit code

from the hit location constitutes the upper k-bits of the

current data bus value. The complement of the hit segment’s

mask is logically ANDed with the data value in order to get

the low order bits of the encoded data bus value. The code is

ORed with the low order data bits and the final 32-bit value

is sent on the data bus..

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

Figure 3 shows a VALVE decoder with three segments of

widths 32-bits, 24-bits and 16-bits respectively. The upper

k-bits of the data-bus-value contain the code if the data

value is encoded. Upon receiving an encoded data bus

value, the decoder searches for the upper k-bits in its

VALVE tables. In the event of a hit, the VALVE table

returns a data value associated with the search code. This

returned data value constitutes the high-ordered bits of the

decoded data value. The complement of the hit segment’s

mask is applied to the current data bus value in order to

obtain the lower order bits of the decoded data value. When

the external encode signal is low, the decoder interprets the

valie “as-is”.

3. Experimental Setup
We implemented our encoder in the sim-outorder

simulator in the Simplescalar toolset [1]. Our test programs

consisted of 23 benchmarks from the MediaBench [5],

NetBench [6], MiBench[4], benchmark suites and four

applications from SPECINT2000 [7].

For SPECINT applications, we fixed the L1 and L2 data

cache sizes at 64KB and 512KB respectively. For rest of

the embedded system applications, we evaluated L1 data

caches of the following sizes – 1KB, 2KB, 4KB and 8KB.

For each of these cache configurations, we fixed the block

size, on-chip latency, off-chip latency and data bus width to

be 32 bytes, 1 cycle, 100 cycles and 32-bits respectively.

The off-chip data value in our simulation consists of both

instruction and data values.

We use a bus power model similar to the one discussed

by [2]. Although estimating the energy used in the off-chip

interconnects is difficult, we can reasonably approximate

the capacitance for the bus using the formula:

Cbus = Cmetal * No. of Bus lines

In this expression Cmetal is the capacitance of the metal

interconnect for each bus line. Using the numbers given in

[2], it is estimated to be 20pF. Cbus gives the effective

capacitive load to be driven during a bus transaction. We

calculate the total bus energy per cycle using the following

formula:

dec
Lr

total E
VCT

E ++=
cyclesof#

}**{
E

2

enc

where, Tr = number of transitions in the off-chip bus
CL = Load capacitance of the off-chip bus line.
V = Supply voltage.

Parameters used for the calculation are: CL = 20pF and V =

3.3 Volts.

4. Results and Discussion
We compare our scheme with frequent value encoding

(FVE) scheme, which is known to work best among the

existing data encoding schemes. Figure 4 shows the

percentage reduction in energy for FVE and VALVE

scheme while using an L1 data cache of size 4KB. The

SPECINT applications shown in the graph used an L1 cache

of size 64KB and an L2 cache of size 512KB. We find that

for almost all the benchmarks, our scheme provides extra

energy savings of 6% to 20% over FVE scheme. Pointer-

intensive applications like mcf and parser have extensive

Figure 1 shows a VALVE encoder with three segments of

32, 24, and 16-bit width. The segment selector gives high

priority to segments with larger bit width (32 in this case).

 VALVE encoder

1. For each data value do

2. If hit in valve table then

3. encode signal = 1

4. current data bus value = code[hit_index] OR

 (complement(mask) AND data value)

5. else

6. encode signal = 0

7. current data bus value = data value

8. insert-in-valve-table (data value)

9. end if

10. end for

Figure 2 shows our VALVE encoding algorithm. Each
incoming data is encoded based on a hit in VALVE table;

otherwise it is sent unencoded.

Figure 3 shows a VALVE decoder with three segments of

32, 24, and 16-bit width. The selection logic selects the

proper segment and decodes the final 32-bit value.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

partial matches in the MSBs and hence, VALVE offers

nearly 20% energy improvement over FVE for such

programs. While in some of the benchmark such as epic and

sha, FVE performs worst than the unencoded data; our

scheme provides an energy saving of more than 20%. Table

1 shows the percentage reduction in energy for different

cache configurations. As we can see from the table that, as

we increase the cache size, the energy saving reduces. This

may be due to reduction in the number of repeated bit-

patterns. On an average, the partial data segments

accounted for 73% of the total segment hits.

On average, VALVE incurs 0.06%, 0.29%, and 0.76%,

performance penalty with codec delay of 2 cycles for

MiBench, MediaBench, and NetBench respectively. We

evaluated the area requirement for VALVE codec and found

that it could be implemented with a minimal area of 0.0486

mm
2
.

5. Conclusion
VAriable Length Value Encoding (VALVE) technique

minimizes the energy consumption in the off-chip data

buses by encoding and decoding variable width repeated bit-

patterns. We measure the energy consumed by the codec

and evaluate the reduction in off-chip bus energy. VALVE

provides up to 75% reduction in energy for some

applications and it yields 58% reduction in energy on an

average, whereas it provides an average energy savings of

16% over FVE scheme. VALVE provides this significant

energy savings at the expense of a very small performance

overhead. We find that our codec can be implemented with

a minimal area of 0.0486 mm
2
.

 References
[1]. D. Burger and T. Austin, “The SimpleScalar Tool Set,

Version 2.0, Technical Report”, University of Wisconsin-

Madison, Computer Science Department, 1997.

[2]. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.

Nachtergaele and A. Vandecappelle, “ Exploration of

Memory Organization for Embedded Multimedia System

Design”, Kluwer Academic Publishers”, 1998.

[3]. J.H. Chern, J. Jurang, L. Arledge, P. Li and P. Yang,

“Multi-level Metal Capacitance Models for CAD Design”,

IEEE Electron Device Letters, Vol13, pp 32-34, Jan. 1992.

[4]. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. Austin, T.

Mudge and R. B. Brown, “ MiBench: A Free,

Commercially Representative Embedded Benchmark

Suite”, IEEE 4th Ann. Workshop on Workload

Characterization, Austin, TX, Dec. 2001

[5]. C. Lee, M. Potkonjak and W. Mangione-Smith,

“MediaBench: a tool for evaluating and synthesizing

multimedia and communications systems”, Intl. Symp. on

Microarchitecture, pages 330-335, 1997.

[6]. G. Memik, W. H. Mangione Smith and W. Hu,

“NetBench : A Benchmarking Suite for Network

Processors”, Intl. Conf. on Computer Aided Design

(ICCAD), pp 39-42,San Jose, California, Nov. 2001.

[7]. SPECINT2000, http://www.specbenh.org/cpu2000

[8]. D. C. Suresh, B. Agrawal, J. Yang, W. Najjar and L.

Bhuyan, “Power Efficient Encoding Techniques for Off-

Chip Data Buses”, In the Proc. of Compilers and

Architecture and Synthesis for Embedded Systems

(CASES), San Jose, CA, Oct. 2003

[9]. J. Yang and R. Gupta, “FV-Encoding for Low Power

Data I/O”, ACM/IEEE Intl. Symp. on Low Power

Electronic Design”, Pages 84-87, 2001.

-60

-40

-20

0

20

40

60

80

100

a
d
p
c
m

fr
a
g

re
e
d
_
d
e
c

re
e
d
_
e
n
c

d
rr

m
d
5

ro
u
te tl

c
jp
e
g

d
jp
e
g

e
p
ic

b
f_
d
e
c
o
d
e

b
it
c
n
s
ts

d
ij
k
s
tr
a

m
p
e
g
2
d
e
c
o
d
e

q
s
o
rt

ri
jn
d
a
e
l_
d
e
c
o
d
e

s
h
a

s
tr
in
g
s
e
a
rc
h

s
u
s
a
n
_
c
o
rn
e
rs

s
u
s
a
n
_
s
m
o
o
th

to
a
s
t

u
n
e
p
ic

g
c
c

m
c
f

p
a
rs
e
r

v
o
rt
e
x

A
v
e
ra
g
e

FV VALVE

 Figure 4 shows the percentage reduction in total energy (including codec’s energy) for all applications.

(L1cache of 4KB)

Table 1 shows the average percentage reduction in
energy for different cache configurations.

Cache size FVE VALVE

1KB 44.94 59.50

2KB 40.88 58.89

4KB 40.87 57.14

8KB 40.62 56.53

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

