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1. INTRODUCTION

In today’s capital-constrained environment, network routers now must support
continually evolving requirements on aggregating a range of network protocols
and traffic types. The need in providing both high performance and flexibility
is the key to designing profitable routers. To meet such requirements, net-
work processors (NPs) have emerged as a new class of programmable platform
for packet processing. New generation NPs offer high performance through
parallel-processing architecture, which incorporates multiple processing ele-
ments (PEs) configured as either independent or pipelined units. Being pro-
grammable, NPs support new applications with improved time to market and
product lifetime, at lower cost.

A number of challenges for NP designs are already evident, and power dissi-
pation is one of them. Typical routers mount a few racks containing groups of
line cards (e.g., 8 and 16) each of which contains one or two NPs. Such routers
are extremely dense in power dissipation (e.g., 375 W per line card [Cisco ]),
which causes high operating temperature. At the same time, NP’s clock fre-
quency and the number of on-chip PEs keep increasing to meet higher and
higher performance requirement. For example, Intel IXP2850 contains 16 mi-
croengines operating at 1.6 GHz with 19~25 W power consumption [Intel 2004],
while its predecessor IXP1200 contains 6 microengines operating at 232 MHz
with 4.5 W power consumption.

This paper develops a low-power technique by exploiting the varying net-
work traffic load. Routers experience different workload during different time
of a day. Figure 1 shows the incoming traffic variation (Mbps) in a router trace
collected from the University of Leipzig’s central Internet access router during a
24-hour monitoring time [National Laboratory for Applied Network Research].
It can be observed that traffic volume varies in a 24-hour period with low
rates at night. The trend shown is common across a large number of Inter-
net packet traces. Significant changes in the traffic bandwidth at the time scale
of 12 hours were also observed from the analysis of Internet backbone traffic
in Papagiannaki et al. [2003]. This traffic variation implies that much less pro-
cessing power is required at night as opposed to daytime. In other words, the
NP is underutilized at night. This phenomenon brings opportunities as well as
challenges for low-power NP design.

To illustrate this, we measured the maximum number of PEs necessary to
handle different traffic volumes and the power they consume in IXP1200 using
an NP simulator [Luo et al. 2004]. Figure 2 shows the incoming traffic rate
and the throughput, both in Mbps, of the NP using three and six PEs with their
corresponding power consumption. Two traffic conditions, A and B, are depicted
for low and high traffic, respectively. We can see that when the traffic arrival
rate is low, using three PEs produces as much processing capability as six PEs,
while consuming much less dynamic power. When the arrival rate is high, all
the six PEs are necessary to deliver full processing power without packet loss.

In this paper, we propose a low-power technique to save the active power of
NPs without sacrificing performance. Our approach is to use the clock-gating
technique on PEs when the packet-processing requirement is low and reopen
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Fig. 1. A sample traffic variation of a central internet access router in 24 hours.
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Fig. 2. A comparison between traffic arrival rate and NP processing capability and power con-
sumption.

the clocks when the need is high. The motivation of using clock gating is to
effectively “turn off” PEs, but not actually power them down completely, con-
sidering the high cost of powering them up. The decision of turning on/off PEs
should be made dynamically according to the activity of PEs. A good indication
is the number of idle threads that are present in the system. Threads in NP
are sequences of code that run in parallel to receive, process, and transmit net-
work packets. If some of them are idle, it means that there is more processing
power than required by the incoming packets. Therefore, we propose to use the
number of idle threads to determine when to turn off a PE. To determine when
to turn on a PE, we observe the pressure arising from the packet incoming
buffer. A full buffer indicates low processing capability from NP and packet
drops may occur. Our goal here is not to introduce extra packet loss due to clock
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gating the PEs, but to guarantee enough processing capability with low-power
consumption.

We design hardware techniques for detecting idleness of threads, determin-
ing thresholds, enabling/disabling the PEs, and rescheduling of packets. We
investigate the potential problems at each step and give solutions to over-
come them. To accurately measure and test the effectiveness of our technique,
we implement our scheme in an NP simulator [Luo et al. 2004]. We add the
clock power modeling to the simulator, and also study the proper timing to
apply clock gating in NP. We measure the power savings and throughput us-
ing real world router traces from National Laboratory for Applied Network
Research [National Laboratory for Applied Network Research]. Our experi-
ments show that significant power savings can be achieved when the traffic is
nonsaturated.

In addition, the leakage power in nanometer devices increases dramatically
because of reduction in threshold voltage (Vg ), channel length, and gate oxide
thickness [Liao and He 2005]. Clock gating only saves dynamic power; idle MEs
still consume a significant amount of leakage power. To tackle this problem, we
use leakage power-reduction techniques—power gating—to further save the
static power in idle MEs. This technique allows us to preserve the contents in
the instruction memory while keeping the leakage low. Our experiments project
that the technique can save 22% more power in addition to using clock gating
alone.

The rest of the paper is organized as follows. In Section 2 we introduce the
network processor model that will be used in our design. Section 3 provides an
overview of the dynamic PE turning-off methodology. Section 4 discusses how
to solve the problems introduced by turning off PEs. In Section 5, we make it
clear why the clock-gating technique is chosen to reduce power and then give
details on how we model clock power. We show the results of our clock-gating
technique in Section 6. Section 7 will discuss an approach to saving leakage
power in low traffic periods. Finally, Section 8 discusses related work. Section
9 concludes this paper.

2. NETWORK PROCESSOR MODEL

A network processor usually contains multiple processing cores, coprocessors,
versatile memory interfaces, and high-speed network I/O interfaces, as shown
in Fig. 3. The multiple processing cores are programmable key elements for
packet processing. Coprocessors, such as hardware accelerators, are incorpo-
rated in many NPs to initialize the processor, log events or speed up a particular
task such as 3DES. An NP usually interfaces with memory units of difference
size and speed. For example, fast SRAM memory is used to hold control data
structures and large SDRAM memory used to store packets payloads. An I/O
bus unit controls packet receiving and transmitting through the network inter-
faces. When packets are received from the bus, they are stored in the SDRAM
and then processed by the processing elements. During this time, both SDRAM
and SRAM are accessed frequently. Once the processing is finished, the packets
are then sent out through the I/O bus unit again.
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Fig. 3. Diagram of a generic network processor.

To design and evaluate our low-power NP techniques, we utilize our open-
source NP simulator NePSim [Luo et al. 2004], because it allows us to modify
components, such as easily turning on/off PEs at the architectural level. Though
NePSim models IXP1200, an Intel NP that emerged several years ago, it still
represents a typical class of NP configuration in which multiple PEs process
packets in parallel. As we will explain in Section 4.4, our techniques can be
naturally applied to more advanced NPs, such as Intel’s IXP2400/2800 [Intel
2004], and AMCC’s NP7510 [AMCC 2002], and because they frequently adopt
parallel PEs for a single task to boost throughput, analogous to IXP1200.

2.1 Brief Background About Intel IXP1200

The architecture of the Intel IXP1200 resembles a generic NP, as depicted in
Fig. 3. There are six processing elements in total, termed microengines or MEs.
Each ME is a 32-bit RISC processor with a five-stage pipeline, which supports
hardware contexts up to four threads. The pipeline performs coarse-grain mul-
tithreading among the threads, i.e., each thread is swapped out of the pipeline
only on certain long-latency events, such as memory accesses; otherwise, it
holds the pipeline resources for continuous execution. Other components in an
ME are registers, ALU, and shifter, instruction memory (termed control store),
and miscellaneous buffers for storing control information and commands. There
is one SDRAM for holding packets and one SRAM for holding control data.
The IXP1200 supports a group of network ports. Each port can receive net-
work packets at independent rates. When a packet appears on a network port,
the IX bus (the I/0 bus unit in Fig. 3) sets a bit associated with the port in a sta-
tus register. Later on, an ME thread will check this bit and fetch the packet for
processing. Upon completion, the thread enqueues this packet into the outgoing
packet queue and informs another thread to transmit the packet to the destina-
tion port. Thus, there are two types of threads in IXP1200: “receiving” threads,
which receive packets and process them and “transmit” threads, which simply
send packets out. Among six MEs, study have shown that when the number of
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receiving MEs versus transmitting MEs is 4:2, the IXP1200 can achieve peak
throughput [Spalink et al. 2001].

We listed here only the necessary information that is relevant to our clock-
gating technique for low power. More details can be found in the IXP1200 hard-
ware reference manual [Intel 2000]. In the remainder of the paper we will use
four benchmarks that have been successfully ported to the NePSim. The details
of those benchmarks will be given in the section on experiment evaluation.

3. POLICIES OF DEACTIVATING AND REACTIVATING PROCESSING
ELEMENTS

In this section, we discuss the policies of turning off and on PEs and the pa-
rameters and their thresholds that we use in the policies.

3.1 Selecting the Parameters

The idea of turning off PEs originates from the observation of the variation
in network traffic over time. Such variation is usually specified in terms of
packet arrival rate in Mbps. It is natural to use this information as a guide to
making decisions. However, it is very difficult to set common thresholds on the
arrival rate across different applications because they support different line
speeds. Therefore, we do not directly use packet arrival rate as a PE-shutdown
parameter.

When the NP is overloaded, incoming packets start to be dropped at the
network interface, which indicates that current NP processing power is not
enough and more PEs are needed. Thus, packet loss is a good indication of the
saturation of an NP. However, although it can serve the purpose of waking up
inactive PEs, this parameter implies that a packet has been lost, while one of
the design goals of our scheme is to avoid extra packet losses that are introduced
because of the reduced number of PEs for power savings.

Alternatively, a PE should be turned off(on) when the workload for the entire
NP is low(high) and fewer(more) number of PEs are enough(needed) to handle
the workload. Such a status can be indicated by (1) the idle time of a PE during
which the PE does no useful work; (2) the length of the thread queue in which
a thread waits for incoming packets; and (3) the fullness of an internal packet
buffer where packets come in and wait to be processed.

The idle time of a PE is a measure of the PEs being put into the sleep mode,
but it is not necessarily an indication of low workload. Many reasons can cause
the idleness of the PEs. Two main reasons are long latency memory access and
no incoming packets. We certainly cannot turn off PEs when they are waiting
for the data from memory. Thus, the idle time of a PE is a mixture of different
events, we will not use this parameter in guiding the decision of turning off the
PEs.

The thread queue holds threads that are waiting to service the arriving
packets. The lower the packet arrival rate, the longer the thread queue. In fact,
the number of threads waiting in the queue is the number of excessive threads
for the current traffic load. In addition, the length of the thread queue can be
easily monitored with little hardware overhead and is not application-specific.
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Thus, we will use it as the main parameter to determine when to turn off
a PE.

The internal packet buffer is a place to temporarily hold the incoming packets
before a thread fetches them for processing. In IXP1200, the RFIFO is a buffer
of this kind [Intel 2000]. When the RFIFO starts to saturate, it implies that
current PEs are almost inadequate, and more processing power is required.
When all PEs are operating, it indicates that the incoming network traffic is
too fast to be processed and, thus, packets start to be dropped. We do not address
this, since it is the nature of a normal NP even without low-power techniques.
When partial PEs are operating, a full RFIFO implies that more PEs should
be brought up to clear off the buffer. Otherwise, packets will be dropped. Thus,
we use the fullness of the internal buffers as an indicator to activate more PEs.
We will explain in Section 4.3 how extra packet loss can be avoided when new
packets arrive before an entry in the buffer is freed up.

In summary, the parameters we will use are the length of the thread queue
and the fullness of the internal packet buffer. Both are monitored on-chip. The
queue length is compared with certain thresholds at fixed time intervals. If a
predefined condition is satisfied, the PEs will be turned off or on. Next, we will
discuss how to determine the thresholds for the parameters.

3.2 Determining the Thresholds

Our basic logic in determining the thresholds is that if shutting down one PE
can equally handle the incoming packets without any loss, then we should turn
off one PE. For example, if, during a time interval, the packets are coming at
the peak rate, all the PEs should be up. At the next time interval, if the arrival
rate drops to below a certain threshold and we justify that with one fewer PE,
the NP can still handle the current incoming packets. We then decide to turn
off one of the active PEs. However, if during this time interval the fullness of
interface buffers is observed, the NP should fall back to have more PEs up and
running.

As explained earlier, the length of the thread queue, 1, indicates the number
of free threads that are waiting for incoming packets. If the number of threads
each PE supports is T, then we could use one fewer PE, if [ > T, to sustain
the network traffic. However, [ is a varying number since the packet arrival
rate is varying because of the network conditions. We cannot simply use an
average value of /. Instead, we monitor the percentage of/ > T during a period
of observation time to decide the excessive processing power in the NP.

We monitor the thread queue length [ for a period of P cycles. During this
time, [ may exceed T for a certain number of cycles, C. If C accounts for the
majority of cycles in P, then we have high confidence of / being greater than
T. Hence, we use a threshold th (th < P) in the unit of cycles that, when C
is greater than th, a PE will be clock gated. Note that the value of th reflects
how aggressively we turn off PEs. The smaller the th, the more aggressive our
scheme is. We initially set th as half of P, i.e., if over one-half of the time there
are more number of free threads than one PE contains, then we turn off one
PE. This indicates a medium aggressiveness.
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The value of th can be determined either statically or dynamically. In a static
th scheme, we let th be a fixed value obtained from an off-line study. In a dynamic
th scheme, we can let the hardware adjust ¢A, based on the history information.
For example, we can lower th by § periodically until negative impact, such as
internal packet buffer full, has been observed. Similarly, we can increment ¢A
gradually as long as no negative impact occurs. With a dynamic scheme, the
th will vary with the traffic. If the traffic volume is low for a long period, th
will drop after several successful shutdowns, achieving more energy savings.
If the traffic volume is high, ¢k value will rise as a result of the observation of
full packet buffer. Therefore, the dynamic th scheme is very dependent on the
arrival traffic. We will compare the two proposed schemes in Section 6.

4. DEACTIVATING THE PROCESSING ELEMENTS

4.1 Terminating Threads Safely

Before turning off a PE, the hardware should first terminate all its active
threads. However, the threads might be working at different stages, either in the
middle of processing a packet or just finished processing a packet. For the latter
case, it is safe to kill the thread immediately. For the former case, the thread
should finish processing the current packet and then terminate. Otherwise, the
packet inside the NP occupies spaces in the packet buffer (or memory), but no-
body would release it from the buffer, creating “leakage” in resources, which
would be drained out eventually.

When a decision is made on turning off a PE, we set an “off” flag in that
PE informing it to prepare for shutting down. In IXP instruction set, there is
a “kill” instruction that a thread can use to terminate itself. For the threads
that are responsible for receiving packets and processing them, they need to
check the “off” flag right after finishing processing a packet. If the flag is set, it
executes the “kill” instruction and pipeline resources are relinquished. There-
fore, implementing this part requires a flag bit per PE and an extra conditional
branch and “kill” instruction inserted in the program.

For the threads that are transmitting packets, i.e., their job is to move packets
that have been processed by receiving threads to the destination port; it is
relatively easier and faster to terminate them. The transmitting threads always
check for some register bits that show whether there are packets to be sent
out before transmitting the packets. Terminating such threads can be done by
clearing off all the bits in the register. Soon the thread will get a cleared register
and then execute a “kill” instruction to cease execution.

The number of receiving versus transmitting PEs when they are turned off
gradually are: 4+2, 3+2, 242, 2+1, and 1+1. The procedure is illustrated in
Fig. 4. The number of active receiving PEs (RCV) and transmitting PEs (XMIT)
are plotted. In the extreme case, the NP should keep at least one receiving and
one transmitting PE to stay awake.

The PEs are multithreaded processors and, at any time, there is only one
thread that is executing in the pipeline. Therefore, terminating all the threads
in a PE takes a while to complete. To see the duration between when a decision is
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Fig. 5. Time spent to turn off PEs.

made and the when the PE is truly turned off, we measure the time across all the
benchmarks in Fig. 5. These durations depend on the time taken for completing
the current packets in the PE upon receiving the turn-off signal. Hence, they
vary from application to application. This figure plots the number of NP cycles
spent on turning off PEs gradually. As we can see, turning off processing PEs
take much longer than the transmitting PE. Turning off receiving PEs needs
up to tens of thousands of cycles, which amounts to 0.0663~0.240 ms at a 232
MHz clock rate. This time varies for different applications since the receiving
threads are responsible for processing packets and different applications have
different processing complexity.

4.2 Reschedule Packets for Orphan Ports

In some NPs, such as IXP1200, the receiving ports are statically allocated to the
receiving PEs. Hence, when a receiving PE is turned off, the ports associated
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with them become “orphans,” i.e., no threads will pick up the packets from
them. As a result, the packets coming from those ports would be dropped. To
address this problem, we develop a dynamic mapping scheme, i.e., every thread
can take packets from every port as long as there is an incoming packet. Such
a dynamic mapping can be found in IXP2400/2800 [Intel 2004] as well, which
demonstrates the readiness of applying our proposed technique in up-to-date
NPs. The main advantage is to provide flexible scheduling of packets to threads,
as explained next.

In static mapping, the IX bus unit continuously examines the ports and sets
a port status bit register whenever there is a new packet. A thread keeps polling
its own bit in the register until it is set, which indicates that a new packet is
ready. After that, the thread starts to receive and process the packet. The main
disadvantage of such a static mapping is that if the packets come into different
ports at different rates, the ones to the busy ports may be dropped, even if there
are threads that are waiting at their idle ports.

To balance the packet arrival rates and the thread-processing capability,
it is better to break the one-to-one tie and let free threads pick up packets
from any ports. The dynamic mapping is accomplished by adding a very simple
hardware in the interface controller. A thread queue is used to store the threads
that are requesting packets. We use a hardware scheduler to scan the existing
bit register (“port_rdy_status”) and assign a ready port to the thread at the head
of the queue, as shown in Fig. 6. In this way, when a thread is ready to receive
and process a new packet, its ID is queued and the thread is put to sleep. The
scheduler scans through the “port_rdy_status” register and assigns the ready
port number “P;” to the queue header “T;.” Thread “T;” is then awakened to read
a packet from “P;.” The scheduler scans through the register in a round-robin
fashion.
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The dynamic scheduler added to the interface controller will take some extra
time to perform mapping between the ports and the threads. This is because the
scheduler needs to read and test the bit one by one to find the first bit that is set.
The thread’s request also needs to be enqueued and dequeued, which are both
extra operations compared to the static scheme. Though reading and testing
the status register bit can be done very quickly, we conservatively charge 1
clock cycle of the 232 MHz NP to every operation, i.e., if m bits are scanned,
m cycles are charged. We also charge 1 cycle to thread enqueue and dequeue,
respectively. Our experiments show that the dynamic mapping effectively solves
the “orphan” port problem.

4.3 Avoid Extra Packet Loss

In general, packet loss may happen when the incoming traffic load exceeds the
maximum processing capacity of the NP. We cannot avoid this kind of packet
loss since it is the nature of the NP, even if all the PEs are running. However,
when we employ clock-gating technique to turn off some PEs, packets may be
dropped when they come in burst, but the NP has not responded to such a
burst. Specifically, the packets will quickly fill up the internal packet buffer so
that when the buffer is full, new packets will be dropped. To avoid packet drops
resulting from clock-gated PEs, we immediately wake up one PE to drain the
packet buffer. Such fast switching is critical to ensure that the activation delay
of PEs does not pose significant impact on the overall throughput of packet-loss
sensitive applications, such as voice-over-IP [Shim et al. 2003].

A clock-gated PE can be awakened very quickly in several cycles [Li et al.
2003]. However, it still takes some cycles before an entry in the packet buffer
can be cleared. This time includes some initialization of a thread upon execution
and the time to put a thread into the thread queue. In the NP we modeled, this
time is within 50 cycles. If a new packet arrives in this period, it cannot be
captured and moved into the already saturated internal buffers.

Therefore, we need to use extra buffer space to hold the packets that arrive
before a thread comes to fetch packets. The extra buffer space is calculated
as follows. The delay before a thread is awakened to receive packets is about
50 cycles. The maximal packet throughput, we observed in NePSim, is about
1 Gbps. Thus we need about 30 bytes (1 Gbps x 50 cycles/232 MHz) extra
buffer space. That is, there are, at most, 30 bytes coming into the NP during
the initiation of a new PE. Since the IXP1200 fragments packets into 64-byte
“mpackets,” only one additional “mpacket” entry is needed to the packet buffer
(RFIFO), as shown in Fig. 6. Thus, the extra buffer space needed to avoid packet
loss is very minimal.

4.4 Putting It All Together

In summary, the NP keeps a counter, which is incremented when the thread
queue length is greater than or equal to T', and is periodically reset by the
“timer” (see Fig. 7). When the timer elapses or packet-buffer-full signal is as-
serted, the shutdown control logic will decide whether a state transition is
necessary (implemented using a finite state machine). Upon a decision, it will
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generate signals to the “PE on/off controller,” informing what action to take on
PEs. The controller then sets or unsets the terminating flag of the selected PE
indicating whether or not it should prepare to stop. For simplicity, we choose
the PE with the current lowest ID number to shutdown or activate. It then
produces a clock enable/disable signal to the AND gate performing clock gating
to the entire PE. Note that our shutdown technique is applied to PEs, not to
other dedicated hardware units, such as accelerators and CAMs, because they
are typically shared resources and are hardly free for shutdown.

Our proposed scheme is generally applicable to other network processors.
However, the number of PEs available for shutdown depends on how they
are organized for applications, i.e., the program/task allocation. Two general
schemes are: multiprocessing and context pipelining. In multiprocessing, the
application is replicated onto multiple PEs that execute in parallel to explore
packet-level parallelism. In context pipelining, the program is divided into sev-
eral stages that are assigned to different PEs to form a pipeline. Our scheme
should be carefully applied to PEs where duplications exist. For example, if n
PEs execute the same program, we have the opportunity to shut down n — 1 of
them as long as the program semantics are not changed. If no duplication exists
and every PE constitutes one stage in a context pipeline, then we have no oppor-
tunity to shutdown PEs. Advanced NPs, such as Intel’s IXP2400/2800, AMCC’s
nP7510 [AMCC 2002], and Hifn’s Rainier [Hifn], employ multiple PEs, among
which duplications do exist. Such PE configurations are the trend in industry
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to exploit the packet-level parallelism. Therefore, our scheme can be extended
and used in other NPs.

5. CLOCK GATING

Many circuit-level techniques, such as voltage scaling and clock gating, were
proposed to save dynamic power. Our previous work applied frequency and
voltage scaling (DVS) to the NP design [Luo et al. 2004]. By partitioning the
PEs into several domains operating at different supply voltages, both static and
dynamic power savings are achieved. However, the adjustment of voltage and
clock frequency requires long latency (e.g., 10 us). This latency is acceptable
for general-purpose processors, but not suitable for NPs that are plugged in
mission-critical routers. During this time, no useful work can be conducted by
the PEs and many packets might be dropped.

Compared with DVS, clock gating is safe because it is simple to implement
and it only needs several cycles for switching on and off [Li et al. 2003]. The
clock gating is implemented by granting a portion of the clock network using
a special “enable” signal, namely, the normal clock signal AND’ed with the
clock-enabling signal that is asserted by the clock-gating control logic. Once the
decision is made, the target unit can be turned on or off in the next clock cycle.
Clock gating saves dynamic power by both reducing power consumption in the
clock-distribution network as well as switching activities in logic components.
The clock accounts for a large portion of power consumption (20-50%) of the
chip dynamic power, because clock signal has large capacitive load because of
its high fan-out. By disabling the clock signals, we can effectively terminate all
those activities in PEs.

5.1 Clock Power Model

To measure the potential power savings of clock gating, we add the clock-power
modeling for various components to the NePSim. We follow the clock models in
[Brooks et al. 2000; Duarte et al. 2002b] and make modifications according to
physical features of the IXP1200. The major sources of clock power we consider
include:

¢ Clock-distribution tree (wiring)—We implement a one-level H-tree, which is
a common clock distribution topology. The wire lengths of the tree is obtained
from the IXP1200 die photo [Halfhill 1999] (126 mm? in a 0.28 um process).

¢ Clock buffers—Clock buffers are chained inverters with increasing gate sizes.
The ratio between each stage and the number of stages are optimized for
speed and minimal clock skews. We estimate the capacitance load of clock
buffers using an analytical model as described in Duarte et al. [2002].

¢ Pipeline latches—The latches are a number flip-flops between pipeline
stages. Their widths are estimated according to the inputs and outputs from
each neighboring stage. The widths determine the number of flip-flops and
the effective clock load capacitance.

¢ SRAM array bit-line precharge in memory structures—We assume the reg-
ister files and the control store (where program is stored) use the classic
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Fig. 8. Clock power breakdown in six PEs in NePSim.

six-transistor cell and a single precharge transistor per bit line. We obtain the
precharge transistor size and the gate capacitance information from HSPICE.

e Clock gate capacitance in execution units—Execution units (e.g., ALU) are
often implemented with dynamic logic blocks for high performance and less
area. The clock signal drives the precharge gates so that the entire logic can
be evaluated later. Hence, the precharge gate capacitances in dynamic logic
modules are considered as clock load.

We use TSMC 0.25-um technology parameters, which is consistent with
NePSim, to estimate the power of the clock load. The clock load in PEs con-
sumes 0.21 W; Fig. 8 captures how the different components contribute to the
clock power within the PEs. Here the PLL's power is not included in the pie
chart, because we assume it is located outside the PEs.

Besides the explicit clock power consumed in clock distribution network and
precharge gates, there are dynamic logic modules that consume power because
of the process of precharging/evaluating the storage nodes. With clock gating,
we can eliminate the useless precharge stage during idle time so that power
saving can be achieved.

* Execution units—We implemented the customized 32-bit ALU, which sup-
ports binary logic functions (i.e., AND, OR, NOT, XOR), addition, and sub-
traction in the Cadence toolset. The ALU latency is verified to be within 4.3 ns
(1 clock cycle) through SpectreS simulations. The average power consumed
by an ALU is 0.03 W.

¢ Wordline decoders—Modern caches use dynamic logic for the wordline de-
coding and driving. Hence, we treat the capacities of the wordline decoder
and drivers as the clock load.

Figure 9 demonstrates the power consumed by individual components inside
six PEs, obtained through taking unlimited uniform traffic input. We observe
that the clock load on average consumes 22% of total PEs’ power, while the
dynamic logic modules (ALU, decoders, etc.) consume 21% of total PEs’ power.
During clock gating, we gate off the circuitry in the clock network, as well as
the activity in the dynamic logic modules. Taking these two factors, we find the
total clock-related power can achieve 43% of total PEs’ power.
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For 0.25-um technology, static power only constitutes a small portion (~2%)
of the total power. As the technology size shrinks, static power will become a
major contribution to the total power. Therefore, saving dynamic power alone
is no longer enough. We will discuss how to reduce leakage power in nanometer
NPs in Section 7.

6. EXPERIMENT EVALUATION

In this section, we first introduce our experiment environment. We then present
the power/performance results after applying our technique on the NP.

6.1 The NePSim Tool

We use NePSim to produce our experiment results. NePSim is an open-source
and fully parameterizable architecture-level simulator. The software develop-
ment kits (SDK) distributed by Intel are not open-source and do not they power
estimations. Other tools, such as the NP analytical models proposed by Franklin
et al. [Franklin and Wolf 2003], are not suitable for our testbed, since we need
to obtain accurate timing and power information in order to evaluate our de-
sign. The NePSim contains a cycle-accurate simulator for IXP1200, a power
estimator, and a trace-based verification engine for testing and validation. The
accuracy of the simulator is more than 95% of the IXP1200’s real performance
[Luo et al. 2004].

6.2 Benchmarks

There are four benchmarks ported in NePSim. They are ipfwdr, url, nat, and
md4. The ipfwdr implements an IPv4 router, which forward IP packets between
networks. The url is a content-aware routing program that routes packets based
on their contained URL request. The nat is a network address translation pro-
gram. The md4 is a cryptography algorithm used in SSL or firewall to generate
128-bit digital signature on an arbitrary length message. We will use all these
four benchmarks in our experiments.
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The benchmark applications used in our study are representative applica-
tions in the network domain. ipfwdr and nat are two header-processing appli-
cations (HPA) and md4 and url are two payload-processing applications (PPA).
HPA and PPA are two major categories of network applications that are also
included in well-known network benchmark suites, such as Commbench [Wolf
and Franklin 2000], NetBench [Memik et al. 2001], etc. Most of the commercial
software are closed-source and cannot be ported to NPs. The ipfwdr application
comes with the Intel Software Development Kit. It is implemented in Micro-
engine C language (a C variant specifically for Intel IXP network processors).
md4, nat, and url are ported from public domain C code to Microengine C. We
took a great effort in porting those programs, because there were no tools to
convert C to Microengine C, and partitioning the data into different memory
modules had to be done manually. Finally, these applications are compiled with
Intel’s Microengine C compiler to run on IXP network processors.

6.3 Input Traffic

We evaluate our design with real network packet traces (e.g., Leipzig-I) down-
loaded from NLANR [National Laboratory for Applied Network Research]. We
experiment with several traces and present the results of Leipzig-I trace, be-
cause its link speed falls within the capacity of the IXP1200 NP system. Other
traces with the same link speed generate similar results. The advantage of us-
ing real network traces is that they represent typical Internet traffic, in terms
of packet size and arrival rate, seen by a router. However, because of the lim-
ited simulation speed of NePSim, it is too expensive to simulate entire traces
of dozens of hours. Since NePSim simulates a multicore and multithreaded ar-
chitecture, it usually takes more than 1 hour to simulate 1 s of real-world trace.
We, therefore, sample a few seconds of real traffic with different arrival rates as
individual inputs to the simulator. We scan the entire trace and divide it into 1-s
slices. We calculate the average packet arrival rate, in units of Mbps, of individ-
ual slices. We choose four slices with the overall arrival rates of 90, 180, 360,
and 480 Mbps, respectively that represent low to high traffic volume. In this
way, we can obtain the typical traffic volume of a raw trace file and bound the
simulation time in a reasonable range. We also adopt our statistical-sampling
technique [Yu et al. 2005] to simulate a 24-hour network trace later, to show
the potential power savings when the low-traffic volume during a day is fully
exploited.

6.4 Power Overhead of the Control Logic

We extend the NePSim simulator with clock-power modeling (discussed in
Section 5), so that we can measure the power savings of the clock gating. For the
execution units, pipeline latches, and memory wordline decoders, the dynamic
and static power is included, if it is not clock gated. If the circuit is clock gated
in a cycle, zero dynamic power is added, while static power is still added.

We also take into account the power overhead associated with the additional
control logics. We measure the power overhead of the counters, threshold regis-
ters, thread queue, and comparators with both Cadence and the Wattch model
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using 0.25-um technology. We find they consume negligible power, i.e., 0.00038
W for a 20-bit counter or register, 0.002 W for a comparator, and 0.0065 W for
24-entry thread queue. The extra buffer we add increases the buffer access en-
ergy by 3.4%, which is very small, considering the fact that the original receive
buffer only contributes less than 2% of NP power [Luo et al. 2004]. In addition,
the controller includes an adder and a finite-state machine (FSM), which makes
the PE on/off decision. The FSM only has a handful of states. Both FSM and
the adder are used just once in each time window, so their contribution to the
overall power consumption is very small. We conservatively charge 2% of the
total PE power as the overhead of the controller.

6.5 Parameter Values

Our power-saving scheme periodically checks if there is any opportunity to turn
off a PE. We need to carefully choose the period length P in order to maximize
the power saving. The smaller the P, the more shutdown opportunities we
can exploit. However, a too small interval does not benefit, because, after a
shutdown decision is made, it takes thousands of cycles for the PE to finish
processing the current packet before gating its clock. Such latency can be as
many as 60 K cycles (for url). We test several values and decide to use 1 M
cycles as the shutdown period, since it can hide well the longest PE shutdown
latency observed.

For the value of th, against which the thread queue length is compared, we
test both the static and dynamic threshold. In static threshold scheme, the ¢A is
set to 500 K cycles (one-half of P) to represent a medium aggressiveness. In the
dynamic threshold scheme, the initial ¢t value is also set to 500 K cycles. It is
then adjusted by 2% positively or negatively to adapt to dynamic traffic volume.
To measure the quality of the static and dynamic thresholds, we compare them
with the optimum case in terms of achievable total power savings. In the opti-
mum case, an oracle control logic decides the minimum number of PEs required
in every cycle. Thus, the optimum resource management gives the upper bound
of energy saving for a given traffic load. We compare the three schemes under
low traffic load (around 180 Mbps arrival rate). We observe that both the static
threshold and dynamic threshold achieve near optimum power savings for the
four benchmarks. The low traffic causes the PEs to be shut down very quickly
in the first few periods, and the PEs remain sleeping in the later periods. Thus
adjusting threshold as in a dynamic threshold does not make a noticeable dif-
ference under low traffic load. In observation of this phenomenon, we perform
further experiments with medium traffic load (around 480 Mbps arrival rate).
The dynamic threshold scheme shuts down more PEs than static threshold by
2%. The fluctuations in the traffic forces PEs to be turned back on several times.
Hence, the dynamic threshold scheme provides useful feedback to the shutdown
control logic. Thus it can exploit more shutdown opportunities than the static
scheme. When we compare the two schemes with the optimum case, we observe
that they are 10% worse in total power savings. This is because the optimum
case, which changes the PE configuration instantaneously, is overly optimistic,
because turning off PEs takes a long time. Our conclusion is that, overall, both
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Fig. 10. Power saving versus packet arrival rate.

static threshold and dynamic threshold can effectively shut down the PEs un-
der different traffic loads and dynamic threshold is better under the fluctuated
medium traffic load. In the following section, we will present the results using
a dynamic threshold. The metrics we evaluate are power consumption (in W),
throughput (in Mbps), and PE utilization.

6.6 Experiment Results

We scan the downloaded traces and extract four segments with different packet
arrival rates. We feed each segment of traces to the 16 input ports of NePSim.

6.6.1 Power Savings. Figure 10 shows the power saving of four bench-
marks at different input traffic loads. The power savings are significant in all
cases we tested. At the lowest traffic load, up to 30% of the power can be saved
for ipfwdr and nat. md4 and url saved about 15 and 14%, respectively. As
the traffic load increases, the power saving decreases, because there are fewer
power-saving opportunities that can be exploited. At the highest traffic load,
power-reduction numbers are the lowest, but there are still 17, 15, 12 and 6%
of the total power saved for nat, ipfwdr, md4, url, respectively. Among the four
benchmarks, nat has the most power savings while url has the least. This is
because the per-packet processing time of nat is the shortest, so, on average,
the thread queue is the longest and the power-saving opportunities are the
greatest. On the other hand, url has the longest processing time, resulting in
the shortest thread queue and the least PE shutdown opportunities.

Note that the power saving in Fig. 10 is estimated for 1-s periods. To illustrate
the energy savings in a much longer time span, such as full-day traffic with
both high and low periods, we conducted simulations using the statistical input
sampling method we developed for efficient simulations with high confidence
and low error [Yu et al. 2005]. We use a 24-hour workload, shown in Fig. 1, for the
experiment. The basic idea of the input sampling is to classify the long trace to
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Fig. 11. Energy savings over a 24-hour period, which includes both high- and low-traffic volumes.

several groups, based on the arrival rates and average packet size, and sample
randomly from each group for detailed simulation. The sample size should be
estimated according to the variations of the performance metrics, i.e., arrival
rates, packet size, power consumption, and the targeted accuracy. Typically,
the larger the variation, the larger the sample size. The sampled traffic in
this experiment is 250-s long for achieving +3% simulation error with 95%
confidence. We run detailed simulations using the sampled traffic and multiply
the simulation results in each group with the weight of the corresponding group.
The weight of each sampled period takes into account the sample size in each
group and the percentage of that group in the entire population. The results
are shown in Fig. 11. We observe that the four benchmarks have energy saving
ranging from 23 to 40%, higher than that shown in Fig. 10. This is because most
time slices in the 24-hour trace have less than 90 Mbps arrival throughput. The
NP has plenty of opportunities to turn off 2-3 MEs. ipfwdr and nat have much
higher energy saving than md4 and url. This is consistent with the results in
Fig. 10. ipfwdr and nat have shorter packet-processing time than md4 and url.
Thus, they have higher resource redundancy for saving power.

Figure 12 demonstrates how the number of PEs varies with packet arrival
rates using our dynamic-threshold shutdown scheme. The benchmark shown
here is url and other benchmarks have similar variations. The x axis shows
time. The left/right y axis shows the arrival throughput/number of active PEs.
The bottom two graphs zoom into two periods—4 AM to 6 AM and 14 PM to 16
PM—which represent the light and heavy workload, respectively. We observe
that with light traffic load between 4 AM and 6 AM, using three PEs can service
the arriving packets most of the time. Whereas during the busy time between
14 PM and 16 PM, four to six PEs are required to service the packets. Note that
the data for the PE number (lower portion of the graph) are not distributed
evenly, because we used stratified sampling technique and carried only detailed
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Fig. 12. Number of PEs varies with arrival rate over a 24-hour period.

simulation at the sampled periods. Our experiment shows that the number of
PEs can vary promptly in response to the traffic fluctuation. There are plenty
of opportunities to shut down PEs during nonsaturated traffic load.

6.6.2 Throughput Changes. Our clock gating scheme has very little im-
pact on the system throughput, as shown in Fig. 13. Deactivating PEs reduced
throughput by at most 4% (url with high traffic load). When less number of PEs
are active, the packets tend to stay longer in the internal buffer before they are
processed and drained out of the NP system. As a result, the system throughput
decreases. Note that lower throughput does not imply packet losses; there is no
packet loss with the help of the extra one-entry buffer. In addition, if the traffic
load continues to increase toward the NP system capacity, the internal buffer
will become saturated and clock gating to PEs will not be applied. Thus, there
will be no reduction of throughput in such situations.

6.6.3 Increasing PE Utilization. From a different perspective, our low-
power technique exploits low utilization of NP under low network traffic. By
turning off PEs we effectively improve PE utilization while saving power sig-
nificantly. We plot the utilization of the active PEs in Fig. 14 under different
traffic loads. Each part of the figure compares the utilization of the active PEs
with and without clock gating (base case). Figure 14 shows that in all the traffic
load we tested, shutting down PEs, improved the utilization of the active ones
by up to 20% (url under 180 Mbps).
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7. LEAKAGE POWER SAVING

The clock-gating technique we used here saves the dynamic power of the PEs
only. The clock-gated components still consume certain leakage power. The
IXP1200 we model currently uses 280-nm technology, for which leakage is not
a significant problem. However, future generations of NPs may incorporate
smaller feature sizes for higher clock frequency and transistor density. This
will bring the leakage power consumption to a significant portion, as projected
by the International Technology Roadmap for Semiconductors [Semiconductor
Industry Association 2001]. Therefore, we need to use leakage-control tech-
niques, such as power gating [Liao and He 2005; Duarte et al. 2002; Powell
et al. 2000] in conjunction with clock gating.

We mainly consider the multithreshold CMOS (MTCMOS) and virtual
power/ground rails-clamp (VRC) techniques as they are believed to be most
effective in leakage reduction [Liao and He 2005]. In MTCMOS, a sleep tran-
sistor with high-V; is inserted between the low-V; circuits and GND. The sleep
transistor can be turned off to reduce leakage power. However, this technique
is stateless, meaning that any logic state is lost because of the leakage saving.
Data retention in instruction memory of the NP is critical to our design as it
takes tens of thousands of cycles to restore the instructions into a PE’s instruc-
tion memory for wakeup. This delay would bring significant packet loss, which
is undesirable in high-performance routers.

Therefore, we prefer a data-preserving leakage-saving technique, such as
the VRC. In VRC, a diode is inserted in parallel with the sleep transistor to
maintain the necessary voltage level for keeping the logic states in the circuits.
VRC, on the other hand, introduces more transition energy and has a lower
leakage-reduction ratio than MTCMOS. We, therefore, propose to use VRC in
PE’s instruction memory and MTCMOS in the other components. Note that we
do not need to preserve the contexts of the threads, i.e., register file content.
This is because when we shut down PEs, we make sure all the threads fin-
ish processing the current packets. When the PEs are awakened, the threads
resume execution for new packets with new context.

We present a quantitative study of the leakage savings employing both the
MTCMOS sleep transistor and the VRC. We study the ideal power gating and
present the upper bound of the power saving. We assume turning off the sleep
transistor encounters negligible overhead and the sleep transistors can effec-
tively reduce the leakage power to zero. In practice, there still exists reduced
static leakage power when power gated, but this reduced amount of leakage
power is very small [Liao and He 2005]. We run experiments in NePSim using
the 100-nm technology size. All the parameters are scaled from 250 to 100 nm
as in Brooks et al. [2000]. The Technology Roadmap for Semiconductors (ITRS)
[Semiconductor Industry Association 2001] predicts that in the next several
processor generations, leakage power will approach 50% of total power dissi-
pation. We, therefore, charge dynamic power and 50% of the maximum total
power as leakage power for each component, if PEs are turned on. When a PE
is turned off, we charge zero dynamic power and zero static power for that PE.
Figure 15 compares the power reductions with and without a leakage-saving
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technique (“power gating”) using a medium traffic load (around 360 Mbps). We
observe that with future technology sizes, saving leakage power lead to a more
significant energy savings than saving dynamic power alone. This additional
amount of leakage energy saving constitutes 15 to 27% of total power. This re-
sult is consistent with the previous study on the SPEC2K benchmarks in VLIW
processors [Liao and He 2005].

8. RELATED WORK

Power dissipation is one of the primary concerns for NP design. Over the
past few years, several power-reduction techniques have been proposed for
contemporary NPs. Franklin and Wolf developed an analytic performance-
power model for typical NPs. They explored the design space of NPs and
showed performance—power tradeoffs for different core and memory configu-
rations [Franklin and Wolf 2003]. However, no specific low-power techniques
were investigated with the proposed model. Other works focused on lower-
ing the power in individual components of an NP. Kaxiras et al. proposed an
IPStash memory architecture as a TCAM (used in packet classification and
routing) replacement, which significantly reduces the memory set associativity
and, thus, power [Kaxiras and Keramindas 2003]. Mallik and Memik [2004]
investigated the optimal operation frequency of the data caches, where reli-
ability is compromised for reduced energy and increased performance. This
is justified by observing that errors in NPs can be fixed by higher levels
of network protocol stack. Memik and Mangione-Smith [2002] proposed a
data filtering engine (DFE) that processes data with low locality before it
is placed on the system bus. The DFE is an execution core with additional
features to control the passing of the memory data to the bus. By offloading
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the code that contains low temporal locality load instructions to DFE, less
bus and L2 cache accesses can be achieved. Thus the overall power can be
reduced.

The work that are most related to our scheme are the system-level designs,
which target the whole processor power reduction. Srivastava et al. [1996] pro-
posed predictive shut down on portable devices. They predicted the next idle
time, based on the knowledge from history, and then shut the processor down by
shutting off the clock or power supply, if the predicted length of idle time justi-
fies the cost. Chheda et al.[2004] proposed compiler-driven static IPC estimation
schemes to adaptively adjust voltage and speed, as well as the instruction fetch
rate. This approach is not suitable for NPs as IPC does not imply the relation
between processing power and input traffic. Thread migration and adaptive re-
source allocation are common approaches to improving power efficiency for NPs
or general CMPs. Kokku et al. [2004] presented an analytical model for allocat-
ing appropriate number of processors to each service on NPs. Their work made
several assumptions to derive the estimate for the benefits in an ideal adap-
tion scheme, while our work solves practical problems encountered in power
management. Therefore, our work is not comparable to Kokku et al. [2004].
EPI throttling [Annavaram et al. 2005] exploits several approaches, i.e., volt-
age scaling and thread migration, to maximize performance given a fixed-power
envelope on CMPs. Our approach is different from EPI throttling because our
goal is to reduce power consumption by exploiting traffic variations rather than
maximizing performance for a given power budget. The system level schemes
discussed so far are flexible in the sense that the resource adjustments can be
performed at fine granularity. However, they also require assistance from the
operating system or the compiler, in addition to the adaption at the hardware
level.

Many circuit-level low-power techniques are also related to our work. To
save dynamic power, many approaches were proposed to reduce the compo-
nent’s switching activities, voltage, and capacitance. Our previous work [Luo
et al. 2004] presented how to apply dynamic voltage scaling (DVS) to reduce
NP’s power. Compared to clock gating, DVS has longer delays for adjusting
the voltage and clock frequency. To save leakage power, techniques proposed
include dual V7, stacked transistors, body bias, and sleep transistors. In dual
Vr technique [Tschanz et al. 2002], low-V; devices are used in the critical
path of a design, while high-V devices are used to reduce the leakage in the
noncritical parts of the design. The stacked transistors [Ye et al. 1998] reduce
leakage through transistor stacks to maximize the number of transistors that
are “off” during the idle mode. Body bias [Thompson et al. 1997] entails dy-
namical changes in the body bias to reduce the leakage current. Using sleep
transistors, which are often referred as power gating or MTCMOS [Liao and
He 2005], is the most effective technique to reduce chip-level leakage. A re-
cent study [Tschanz et al. 2003] shows that pMOS sleep transistor achieves
15% power reduction and dynamic body bias has 8% total power reduction on
a 4-GHz, 1.3-V, 130-nm 32-bit integer execution core. Our scheme thus uses
power gating to save leakage power. Other techniques might be also used in
conjunction with power gating.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 4, Publication date: March 2007.



Conserving Network Processor Power Consumption . 25

Numerous other works focus on boosting NP performance, i.e., packet pro-
cessing throughput. To name a few, Hasan et al. [2003] proposed a series
of techniques to improve packet memory throughput, and, hence, the packet
throughput. Sherwood et al. [2003] proposed a pipelined memory design that
emphasizes worst-case throughput over latency, and coexplored architectural
trade-offs. Spalink et al. [2001] experimented using IXP1200 to build a robust
inexpensive router that forward minimum-sized packets at a high throughput.

9. CONCLUSION

We investigated that under nonsaturated incoming traffic rates, power con-
sumption of an NP can be saved by putting its processing elements into a low-
power mode with no impact on packet loss ratio and little impact on overall
system throughput. Our technique can be easily employed in various scenar-
ios, since it adapts to traffic variation without imposing too much overhead
at runtime. With current NP technology, significant dynamic power can be
saved through efficient clock-gating PE components. In future generations of
NP where technology size enters nanometer scale, leakage power becomes dom-
inant and its reduction can be achieved through state-preserving power-gating
techniques, in addition to clock gating. The effectiveness of our proposed power-
reduction schemes have been demonstrated quantitatively in this paper.

REFERENCES

AMCC. 2002. Amcc np7510 product manual. Applied Micro Circuits Corp. Sunnyvale, CA.

Annavaram, M., GrocHOWSKI, E., AND SHEN, J. 2005. Mitigating amdahl’s law through epi throt-
tling. Proceedings of International Symposium on Computer Architecture.

Brooks, D., Ttwari, V., AND MarTONOST, M.  2000. Wattch: a framework for architectural-level power
analysis and optimizations. In Proceedings of International Symposium on Computer Architec-
ture. 83-94.

CHHEDA, S., UnsaL, O., KogreN, 1., KrisuNa, C., AND MoriTz, C. 2004. Combining compiler and
runtime ipc predictions to reduce energy in next generation architectures. In Proceedings of the
1st Conference on Computing Frontiers. 240-254.

Cisco. Cisco crs-1 carrier routing system 8-slot line card chassis system description.

DUARTE, D., Tsal, Y., VIJAYKRISHNAN, N., AND IrwiN, M. 2002a. Evaluating run-time techniques for
leakage power reduction. In Proceedings of International Conference on VLSI Design.

DUARTE, D. E., VIJAYKRISHNAN, N., AND IRwIN, M. J.  2002b. A clock power model to evaluate impact of
architectural and technology optimizations. IEEE Transactions on VLSI Systems 10, 6, 844-855.

FrankLIN, M. aND WoLF, T. 2003. Power considerations in network processor design. In Workshop
on Network Processors in conjunction with Ninth International Symposium on High Performance
Computer Architecture (HPCA-9). 10-22.

Havramn, T. 1999. Intel network processor targets routers. Microprocessor Report 13, 12 (Sept).

HasaN, J., CHANDRA, S., AND VIJAYKUMAR, T. N. 2003. Efficient use of memory bandwidth to im-
prove network processor throughput. In Proceedings of International Symposium on Computer
Architecture. 300-313.

Hirn. Hifn 5np4g network processor data sheet. Hifn Corporation, Los Gatos, CA.

InTEL. 2000. Ixp1200 network processor family hardware reference manual. Intel Corporation,
Santa Clara, California.

InTEL. 2004. Intel ixp2xxx product line of network processors. Intel Corporation, Santa Clara,
California.

Kaxiras, S. aAND KeEraminDas, G. 2003. Ipstash: a power-efficient memory architecture for ip-
lookup. Proceedings of International Symposium on Microarchitecture. 361.

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 4, Publication date: March 2007.



26 o Y. Luo et al.

Koxkky, R., RicuE, T., KunzE, A., MUDIGONDA, J., JASON, dJ., AND VIN, H. 2004. A case for run time
adaption in packet processing systems. ACM SIGCOMM Computer Communication Review 34, 1.

Li, H., Baunia, S., CHEN, Y., VIJAYKUMAR, T., AND Roy, K. 2003. Deterministic clock gating for mi-
croprocessor power reduction. In Proceedings of International Symposium on High Performance
Computer Architecture. 113.

Liao, W. anp HE, L.  2005. Microarchitecture-level leakage reduction with data retention. IEEE
Transactions on Very Large Scale Integration Systems 13, 11.

Luo, Y., YaNG, J., BHuYaN, L., AND ZHAO, L. 2004. Nepsim: A network processor simulator with
power evaluation framework. IEEE Micro.

MaLuig, A. AND MEMIK, G.  2004. A case for clumsy packet processors. Proceedings of International
Symposium on Microarchitecture.

MEewMik, G., ManGioNE-SmiTH, W. H., aAND Hu, W.  2001. Netbench: A benchmarking suite for network
processors. In Proceedings of International Conference on Computer Aided Design. 39.

MewMIk, G. AND MancioNE-SMiTH, W. H. 2002. Increasing power efficiency of multi-core network
processors through data filtering. Proceedings of International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems, 108-116.

NatioNAL LABORATORY FOR APPLIED NETWORK RESEARCH. The nlanr measurement and network analy-
sis. National Laboratory for Applied Network Research (http://www.nlanr.net/).

Papaciannakt, D., Tart, N., ZHANG, Z., anD Diot, C. 2003. Long-term forecasting of internet back-
bone traffic: Observations and initial models. In Proceedings of IEEE INFOCOM.

PoweLL, M. D., Yang, S., FaLsarr, B., Roy, K., AND ViJavkUMAR, T. N. 2000. Gated-vdd: A circuit
technique to reduce leakage in deep-submicron cache memories. In Proceedings of International
Symposium on Low Power Electronics and Design. 90-95.

SEMICONDUCTOR INDUSTRY AssocIATION. 2001. International technology roadmap for semiconduc-
tors. Semiconductor Industry Association, San Jose, CA.

SHERWOOD, T., VARGHESE, G., AND CALDER, B. 2003. A pipelined memory architecture for high
throughput network processors. In Proceedings of International Symposium on Computer Ar-
chitecture. 288-299.

Suiv, C., XiE, L., ZHANG, B., AND Sroang, C. 2003. How delay and packet loss impact voice quality
in voip. Qovia Inc., Fredereck, MD.

Sparing, T., Karuin, S., PETERSON, L., AND GorTLIEB, Y. 2001. Building a robust software-based
router using network processors. In Proceedings of International Symposium on Operating Sys-
tems Principles (SOSP). 216-229.

Sr1vasTava, M., CHANDRAKASAN, A., AND BRODERSEN, R.  1996. Predictive system shutdown and other
architectural techniques for energy efficient programmable computation. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 4, 1.

THoMPSON, S., YOUNG, 1., GREASON, J., AND BoHR, M. 1997. Dual threshold voltages and substrate
bias: keys to high performance, low-power, 0.1 um logic designs. Symposium on VLSI Circuits
Digest of Techical Papers, 69-70.

TscHANz, J., YE, Y., WEL, L., GOVINDARAJULU, V., BORKAR, N., BURNS, B., KARNIK, T., BORKAR, S., AND DE,
V. 2002. Design optimizations of a high-performance microprocessor using combinations of
dual-vt allocation and transistor sizing. Symposium on VLSI Circuits Digest of Techical Papers,
218-219.

TscHANZ, J., NARENDRA, S., YE, Y., BLOECHEL, B., BORKAR, S., AND DE, V.  2003. Dynamic sleep tran-
sistor and body bias for active leakage power control of microprocessors. IEEE Journal of Solid
State Circuits 38, 11.

Wour, T. AND FrRANKLIN, M. A. 2000. CommBench - a telecommunications benchmark for network
processors. In Proceedings of IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). Austin, TX, 154-162.

YE, Y., Borkar, S., anD DE, V. 1998. A new technique for standby leakage reduction in high-
performance circuits. Symposium on VLSI Circuits Digest of Techical Papers, 40—41.

Yy, J., Yang, J., CuEN, S., Luo, Y., anp Bruvan, L. 2005. Enhancing network processor simula-
tion speed with statistical input sampling. In International Conference on High Performance
Embedded Architecture and Compilers.

Received August 2005; revised March 2006; accepted July 2006

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 1, Article 4, Publication date: March 2007.



