
Locating Compromised Sensor Nodes through
Incremental Hashing Authentication

Youtao Zhang1, Jun Yang2, Lingling Jin2, and Weijia Li1

1 Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260
2 Computer Science and Engineering Department, University of California at Riverside,

Riverside, CA 92507

Abstract. While sensor networks have recently emerged as a promising com-
puting model, they are vulnerable to various node compromising attacks. In this
paper, we propose COOL, a COmpromised nOde Locating protocol for detect-
ing and locating compromised nodes once they misbehave in the sensor network.
We exploit a proven collision-resilient incremental hashing algorithm and design
secure steps to confidently locate compromised nodes. The scheme can also be
combined with existing en-route false report filtering schemes to achieve both
early false report dropping and accurate compromised nodes isolation.

1 Introduction
The sensor network has recently emerged as a promising computing model for many

applications e.g. patient status monitoring in a hospital, and target tracking in a battle-
field. However, its unattended nature makes the network vulnerable to varying forms of
security attacks such as a compromised node dropping true data reports [9] or injecting
false reports [18, 22]. Without being detected, compromised nodes may prevent the sink
from reaching a correct or optimal decision. In addition, routing false reports wastes the
energy of relay nodes, which reduces the lifetime of the network.

The previous work proposed either to locate compromised nodes through en-network
detection [12, 15] or to filter false reports early in routing [18, 22]. While they are ef-
fective in many cases, both approaches have limitations — the former suffers from low
accuracy due to possible collusion attacks and the latter cannot exclude the compro-
mised nodes. In this paper we propose COOL, a COmpromised nOde Locator for locat-
ing malicious nodes if they send out false data reports or drop real reports. Our design
is based on an intuitive observation — for any well-behaved node in the sensor net-
work, the set of outgoing messages should be equal to the set of incoming and locally
generated or dropped messages 3. We exploit a proven collision-resilient incremental
hashing scheme — AdHASH [1] and show how to securely collect the AdHASH val-
ues and confidently locate compromised nodes. We incrementally extend the testing so
as to capture an inconsistency when a bad link is included. A bad link is a hop between

3 Some messages may be lost due to weak connection in the sensor network. It is also considered
as one type of fault. We detect such links and let the sink decide if the involved nodes should
be excluded.



two nodes in which at least one is compromised. For such links, we drop both nodes
achieving an upper bound of 2m excluded nodes if there are m malicious ones.

The remainder of the paper is organized as follows. We describe the problem, and
the network and attack models in Section 2. The COOL protocol is then presented in
Section 3 with optimizations presented in Section 4. We evaluate proposed schemes and
show the results in Section 5. Section 6 discusses the related work. Section 7 concludes
the paper.

2 Problem Statement
2.1 The network model

We assume that the sink assign a unique ID and a unique secret key to each sensor
before deployment. Sensors are left unattended after deployment and monitor events
of interests. While some may be compromised, we assume that the majority of sensing
nodes for any single event are trustworthy.

We adopt a cluster-based multi-hop routing scheme due to its energy efficiency [6,
19]. Sensing readings (including the timestamps [18]) are first sent to the cluster head
(CH) at which the are aggregated to a data report. By taking the majority of the readings,
the CH includes the selected sensing node IDs and their MACs (message authentication
code, discussed next) in the content of the aggregated report. The CH also appends
its own ID and MAC to the report. After generating the report, the CH forwards it
along the routing path to the sink. Messages from the sink are first sent to CH and then
broadcasted within the cluster.

At the cluster head level, the routing graph is built using directed diffusion protocol
[2]. Paths are set up to monitor different interests. We assume reports are forwarded
according to the routing path in one epoch. Each node checks the received report and
drops it if not for a cached interest.

2.2 The attack model

After compromising a sensor node, the adversary can retrieve all security informa-
tion including the secret key. (S)He can then inject false reports ([22, 18]), or drop some
of its received reports ([9]). The adversary knows the COOL or other security enhance-
ment algorithms, and may strive to send back data targeting at defeating the protection.

The injection attack or the dropping attack may occur at a sensing node; at a source
CH; or at a relay CH. In this paper we address all these types except the dropping
attack at a source CH node. Dropping at a source CH is more difficult to defend since
a compromised CH may refuse to form a report even after receiving several sensing
readings. On the other hand, a CH is usually granted the power to legally drop some
readings when constructing the report (to shield random erroneous readings). If it is a
concern, then each sensing reading could be sent to more than one source CH nodes
resulting in increased routing overhead as we will discuss later.

A compromised node is located if and only if its node id is known to the sink who
can then securely notify other sensors (using broadcast authentication [13]). Without
being located, the compromised node can be elected as a CH node and continuously
inject or drop reports. After being located, the network is free from its injection and



dropping attacks since others know it is excluded. Of course additional mechanism
might be needed to prevent it from malicious signal collision or changing its id.

Reports may be lost due to weak connections. This is one type of faults that should
also be identified. Identifying a weak connection is beneficial since it gives the accurate
location where a problem occurs. Based on the frequency of a faulty link, the sink can
always make the decision whether or not to exclude the involved nodes. Since it is
straightforward to detect/eliminate such links, we will focus on the report loss due to
security attacks in the rest of the paper.

2.3 The design objectives

For a sensor network with above settings and models, our design goal is to effec-
tively identify those compromised nodes and then exclude them from the network. The
proposed algorithm meets the following requirements.

– The sink has the ability to discriminate the false reports;
– The scheme can defend both true report dropping at the relay nodes and all types

of injection attacks;
– The algorithm can locate compromised nodes;
– The algorithm is effective with small overhead introduced to existing clustering and

routing algorithms.

3 The COOL Protocol
In this section we present the basic design of the COOL protocol. We first discuss

the incremental hash function, and then describe the high-level idea of malicious node
detection using a simple example. The details of the systematic protocol operations are
then discussed, followed by security analyses of the protocol.

3.1 The incremental hash function

Fig. 1 illustrates the concept of the incremental hash [1]. It computes a crypto-
graphic hash value for a finite set of elements. Each element is first concatenated with a
unique id and then hashed by a standard cryptographic hash function e.g. MD5 or SHA
[14]. Those intermediate hash values are then combined by a combining operator to get
the incremental hash value.

In this paper, we use the AdHASH introduced in [1] (abbreviated as AH(...)):
AHh

M(x1,x2, ..,xn) = ∑n
i=1 h(〈i〉.xi) mod M

where h is a standard cryptographic hash function and M is a very large integer value
with k bits. The 〈i〉 is an id assigned to each message such that the concatenation of them
is unique in the entire set. When we apply the AdHASH in our sensor network, each
report is assigned with the sensor’s ID and a local report sequence number. Therefore,
each report received by the forwarding cluster head is unique. As we can see, the AH
computed by the cluster head is independent of the order at which reports are received.
This incremental hash function has the followingproperties that are useful in our design.

– Compression. It compresses inputs of larger size into k bits such that each incre-
mental hash value can be stored using small number of bits in each node.



– Incrementality. The AH of a larger set can be computed incrementally from the
AH of its subset. In particular, when a new item is inserted to the set, the new
AH can be computed from the old value and the h() value of the new item. i.e.
AHh

M(x1, ...,xn+1) = (AHh
M(x1, ..,xn)+h(〈n+1〉.xn+1)) mod M

– Efficiency. The computation of an AH hash value just needs several additions and
one modulation in addition to the standard hashing. Particularly, for the insertion
of a new item, the computation overhead is one addition and one modulation only
(the width of the h and AH is of the same order). This is important as most hash
values are to be maintained by resource constrained relay nodes in our design.

– Proven collision-resilience. It is computationally infeasible to forge another set of
items that can result in a same hash value [1]. This gives us a solid security ground
for designing security enhancement schemes for sensor networks.

We selected h to be MD5 [14] and k to be 128 in the design. The selection of MD5
is independent and can be substituted if for example security is a concern [17, 16]. The
security of AdHASH requires that the number of reports should be greater than k [1].
This is generally not a restriction — the protocol can start after the network has been
warmed up.

������ ������ � ������

	 	 � 	


��	
�����

�
��������


����������	��
	��	


�����

�	�
���������
��������

Fig. 1. An incremental hash function.

�

�

��

�

�

���	
���




�

�

�

��

���

��

�

��	�
���
���������




�

Fig. 2. Locate compromised nodes using
incremental hashing.

3.2 The basic design — a simple example

We next show how an incremental hash function can be applied to authenticate
messages and in particular how to locate malicious nodes in a sensor network.

The design is based on an intuitive observation, i.e. the set of outgoing (forwarded)
messages of a well-behaved node equals the set of the incoming (received) and locally
generated/dropped messages. Unfortunately, these message sets are maintained on dif-
ferent sensor nodes across the network making it impractical to pass them around and
compare. Luckily with the incremental hash function, we only need to compare the
hash values of different sets while keeping sufficient confidence to claim that their hash
values match indicates that the message sets also match, i.e. Fig. 2(a).

No node being compromised
⇔

{msgout} = {msgin} ∪ {msglocal}
⇔ (with sufficient confidence)

AH({msgout}) = (AH({msgin}) + AH({msglocal})) mod M



To see how this principle is applied in our sensor network, let us look at a simple
example (Fig. 2). Here we show four cluster head sensors (s1-s4) and one sink (s0).
The messages are labeled in letter a,b etc. Suppose the compromised node s2 injects a
false message X and pretends that X is sent by s4 (in this section, we will also discuss
what if X is forged as if it is sent by s2). All messages are forwarded to the sink, but the
AH values are calculated and kept locally. Specifically, s4/s3 calculates outgoing AHs
for (a,b)/(d,e); s1 calculates two incoming AHs for (d,e) and (a,b,X) respectively,
and one outgoing AH for (a,b,c,d,e,X); s2, as a compromised node, can fake the
incoming or outgoing AHs for either (a,b) or (a,b,X). Note that s2 will not produce
another incoming AH for X as s2 tries to hide itself from being detected immediately
(X is “originated” from s4). As we will elaborate later that the AHs for locally generated
legitimate messages are computed at the sink.

The sink receives all messages including X . It can immediately identify that X is
false since s2 does not have the secret key of s4 and cannot generate the consistent
MAC for X . Next, the sink tries to locate the sender of X , i.e., the node that has been
compromised. At this time, the sink collects all the AHs. We can assume that they all
arrive correctly as simple endorsement using secret keys can assure this, and there are
fixed number of them for a given routing so that no AHs are dropped. The sink then
starts to check the “node consistency”, i.e., if

AH(incoming∪generated) = AH(outgoing∪dropped) (1)

holds for every node. Note that due to the additivity of the AH function, AH(incoming∪
generated) = (AH(incoming) + AH(generated))mod M (and the same for the right
hand side). It is easy to see those conditions for s1, s3 and s4 satisfy. For s2, as we
mentioned, there are two options —AH(a,b) or AH(a,b,X)— for both the incoming
and outgoing AH values, forming four possibilities. If s2 choses the different values
for incoming and outgoing AHs, it would immediately be identified as compromised
as equality (1) would not satisfy. Let us assume s2 is intelligent enough not to expose
itself too easily, and thus chose a consistent incoming and outgoing AH pair. Thus, it
will pass at least the “node consistency” check.

Next the sink starts a “link consistency” check in which the AH of the outgoing
message on a link should equal the AH of the upstream incoming message. This can be
easily checked for links without the node s2. Let us assume that the s2’s incoming and
outgoing hashes are both AH(a,b,X). Then, as an outgoing AH, AH(a,b,X) is consis-
tent with one of the incoming AHs for s1. However, as an incoming AH, AH(a,b,X) is
inconsistent with the outgoing AH for s4 which is AH(a,b). In other words, s2 chose
that value to lie that s4 had given it a false incoming message. The sink now cannot
distinguish who is the real compromised node, but can at least conclude that one of
them is flawed. A new routing graph will be generated excluding both s4 and s2 after
detecting the link inconsistency.

Notice that node s2 can destroy s1 in the same way by producing AH(a,b) for link
consistency checking, or even destroy all the adjacent nodes by forging an arbitrary
AH making none of the links consistent. It would be unnecessarily conservative if all
involved nodes in such a scenario are eliminated since the faults are due to only one evil
axial node. Instead, our protocol removes one link at a time, removing the axial node in
the first place and saving the other nodes being circumvented.



Let us discuss what if X is forged as if it is sent by s2. The sink can still identify
X as a false report since each legal one should have multiple sensing node MACs —
s2 cannot construct these sensing node MACs as it does not have their secret keys. Old
readings cannot be replayed since a timestamp is included in the reading. Notice that the
sink computes local AH values only from legitimate reports, that is, it excludes X from
generating the local AH value for s2. Hence, no matter which incoming or outgoing
AH values s2 chooses (either AH(a,b) or AH(a,b,X)), there bounds to be a node or
link inconsistency.

Before presenting the COOL protocol, we summarize the benefits from excluding
compromised nodes from the network.

– Communication energy savings. Once the compromised nodes have been excluded,
no false reports can be injected into the network. As a result, the energy drained
by forwarding false reports can be saved. This is different from en-route filtering
schemes in which false reports are still forwarded several hops ([18, 22]) before
being detected and dropped.

– Computation energy savings. In the basic COOL scheme, we do not perform en-
route packet authentication but rather only update incremental hash values. We can
afford less frequent authentication by excluding compromised nodes and form a
network with trustworthy nodes.

3.3 The COOL protocol

The goal of the COOL protocol is straightforward: we securely collect AH hash
values from the network and send them to the sink; we drop the identified node if a
node inconsistency is found, and drop both nodes if an inconsistent link is found. The
detailed protocol contains the following phases.

(1) In the initialization phase, we assign a unique ID and a secret symmetric key to
each sensor node. The sensor nodes are deployed thereafter.

(2) In the routing graph discovery phase, we broadcast hello messages along the down-
stream routing path and collect the current routing graph from replies.

(3) In the report forwarding phase, we endorse each report by the secret key of the
sender and have it forward along the routing path. Each node maintains the AH
hash values for each of its incoming and outgoing links.

(4) In the hash value collection phase, the sink sends out a request to collect hash values
from the path where the false message belongs to.

(5) In the compromised node detection phase, the sink finds inconsistent nodes and
links using the incremental hash function AH.

(6) In the routing graph fix phase, the sink replaces the excluded cluster heads with
newly selected ones.

Next, we elaborate each of the phases with more details.
Phase 1: Initialization. Each sensor is assigned a unique integer ID and a secret

symmetric key before being deployed into the field. Both the ID and the key are known
to the sink. This is similar to [22] but we do not request any key sharing among sensor
nodes. The node ID occupies two bytes (16 bits) which can distinguish 64K sensors in



a network. Larger networks can adaptively adjust this bit width to accommodate their
needs. The key is used to generate a MAC by a sensing node for the sensing reading
sent to the source CH node, and by a source CH node for the report sent to the sink.
By checking the MACs using the secret keys, the sink can detect tampered reports or
injected false reports from compromised source CH or relay CH nodes.

Phase 2: Routing graph discovery. The discovery starts at the beginning of an
epoch, e.g. cluster heads are reselected and a new routing graph is constructed accord-
ing to [2]. The sink forms an entire routing graph through collecting information from
distributed cluster heads. It sends out a timestamped “hello” message to all its adja-
cent cluster heads who then forward this message downstream until it reaches the leaf
nodes. All the nodes then respond with their node IDs as well as their adjacent node
IDs. For those messages, a MAC using the local secret key is also attached to ensure
their integrity.

Each node only collect replies from its downstream nodes. To prevent malicious
report dropping, the reply is collected in order — each node first collects the replies
from all its children nodes and then sends out its own reply. The sink finally assembles
the complete routing graph from all replies.

To ensure “hello” messages are not abused, a broadcast authentication [13] is ap-
plied. In addition, a selected cluster head may try to find a different routing path if it
does not receive a “hello” message within a certain time interval after its election to
avoid being isolated from the network.

Phase 3: Report endorsement and forwarding. Fig. 3 illustrates the report gener-
ation, endorsement and forwarding in the network. We also list the related authentica-
tion actions and discuss why injected false reports and dropped legitimate reports can
be detected.

To check equation 1, each node maintains its incoming AHs and outgoing AHs.
The local AH (generated from locally generated reports) is computed at the sink rather
than the individual node. This is because false reports should not be used to compute
the local AH (otherwise there is no inconsistency) and the sink knows what those false
reports are. The sink generates a local AH for each node using only the legitimate
reports whose source IDs are that node, discarding all false reports discriminated. For
example, a node m may forge a false report using its own ID as the source ID. This
false report can be identified by the sink since it does not have enough legal sensing
node MACs. After identifying X as a false report, the sink will exclude it from updating
the local AH of m, which creates a node inconsistency if node m updated the false report
into its outgoing AH, or a link inconsistency otherwise.

The drop AH (generated from locally dropped reports) is not used in the basic
scheme i.e. we assume a non-compromised node does not drop reports intentionally.
A report is dropped only by compromised nodes who always try to conceal themselves
as much as possible. Consequently, the AHs for dropped reports are never created.

Either false report injection or legitimate report dropping creates AH inconsistency
for some nodes or links. The difficulty is how to expose the inconsistency. The technique
presented in phase 4 handles this problem.



Sensing node Cluster head (CH) node
Data aggregation Report relay

Report
gen-
era-
tion
and
en-
dorse-
ment

An event is detected
by at least M sur-
rounding sensing
nodes. Each of
them e.g. m sends
the sensing reading
and the MAC (gen-
erated using m’s
secret key) to C CH
nodes.

By taking the majority of re-
ceived readings, the source CH
constructs a report containing
the sensing value and received
MACs. It also appends its ID
and a unique sequence number.
A unique MAC is generated for
the report using its own secret
key. Both the report and the MAC
are forwarded along a multi-hop
route to the sink.

Since the keys to attached MACs
are only known to the sink, re-
lay nodes do not perform any en-
route checks in the basic scheme.
A relay node receives the report
from one downstream link and
forwards it along one upstream
link.

Auth-
enti-
cation

An AH value is
maintained for the
outgoing link of
m. The value is
updated with the
sensing reading and
the MAC each time
when m sends them
out.

A source CH maintains one out-
going AH and in the case it is also
a relay node, it maintains sev-
eral AH values with one for each
of its incoming/outgoing links re-
spectively. After sending the re-
port generated by itself, it up-
dates the outgoing AH value with
the report and the MAC.

A relay CH node maintains a dif-
ferent AH value for each of its
incoming and outgoing links re-
spectively. For the forwarded re-
port, it updates two AH values
— the incoming AH value for
the link from which the report
is received and the outgoing AH
value for the outgoing link.

Detect-
ing
injec-
tion
attack

A source CH should
receive readings
from at least M
sensing nodes. If
some (< M/2) are
compromised and
send back false
readings, these
readings will not
affect the report
generation at the
CH node.

A compromised source CH may
forge false reports. It cannot ac-
cumulate M/2 legal MACs for
the false reading. A report with
such a value can be detected
at the sink. Old readings and
MACs cannot be replayed since
the sensing reading has a times-
tamp indicating when the event
happens [18]. Different sensing
node MACs are expected even
for the same sensing reading but
at a different time.

If a relay node forges a report
with the source node as itself, the
false report can be detected as
the data aggregation case. If a re-
lay node forges a report with the
source node id as one of its down-
stream nodes, it does not have the
secret key of the faked sender to
generate a matching MAC. The
report will be detected by the
sink. The compromised node is
then located using our algorithm.

Detect-
ing
drop-
ping
attack

Dropping readings
at some (< M/2)
compromised sens-
ing nodes does not
affect the genera-
tion of the legit-
imate report at a
source CH node.

[Discussion only: not the focus
in the paper] We can elect more
than one CH to perform data ag-
gregation. If some but not ma-
jority of them refuse to gener-
ate reports from received read-
ings, the sink can still receive the
legitimate report and thus detect
packet dropping in the network.
In the rest of the paper we assume
that for each event one CH node
is elected for data aggregation.

If a relay node drops some re-
ports, the sink can check the se-
quence number from a source
CH and reveal the dropping from
non-contiguous numbers. If the
compromised relay node chooses
to drop all following reports from
a CH, the sink can periodically
collects all AH values to detect
the dropping attack.

Fig. 3. Actions taken by different nodes.



Phase 4: Hash value collection. Hash value collection is triggered by any of the
following two conditions: (i) the sink has detected one or multiple false reports; (ii)
a preset timer has elapsed. The former is to detect injected false report attack while
the latter is to detect report dropping attack. In the first case, AH values are collected
only from the path where the erroneous report belongs to. Such a path can be identified
correctly as we explained earlier that a spoofed report can reach the sink only if it
is generated from a downstream node. Collecting the hash values along a path greatly
reduces the number of messages introduced to the network. In the second case, however,
all the hash values in the network are queried as the sink has no clue of where reports
could be dropped. Next we show how to collect AHs from the erroneous path. It is
trivial to extend the scheme to all nodes.

To collect the hash values, the sink sends out an inquiry message onto the erroneous
path. For example, in Fig. 2, to detect the compromised node on path s4-s2-s1-s0, we
only collect hash values on this path but not from the link s1-s3 (but in phase 5 the sink
still needs to compute the AH values for these reports injecting to the path from s3). We
must be very careful in this collection process as the forwarded AHs may be altered by
compromised nodes as well. Thus, we treat all the AH values as normal data reports
and send them upstream starting from the leaf cluster nodes. The only constraint is:
the outgoing AH on a link does not update the incoming AH on the same link since
this would result in link inconsistency and make the hash collection process and later
checking too convoluted. As a result, the node consistency checking would be adjusted
to accommodate this exception. We will give formal derivation later.

Phase 5: Identify compromised nodes.
The sink performs two types of tests: the node consistency and the link consistency

test. The first is to test the matching of incoming and outgoing AH values for each node
on the erroneous paths. The AHs for the incoming links not on erroneous paths, e.g, the
s1-s3 path in our example, and for locally generated reports are calculated by the sink
directly; other AHs are from the returned AH reports. If there is a mismatch, the node
is tagged as a compromised node. For example, in Fig. 2, the sink tests s1 using

(AH2→1
︸ ︷︷ ︸

collected

+AH(c)+AH(d,e)
︸ ︷︷ ︸

calculated by the sink

) mod M =?AH1→0
︸ ︷︷ ︸

collected

The second type is to test if the outgoing and incoming AHs are consistent on all
links. Each hash value should match with the one reported by the other end of the link.
If any inconsistency is found, the sink tags both nodes as problematic as it is now hard
to flag one node with 100% confidence. e.g. we test

(AH1→0
︸ ︷︷ ︸

collected

=? AH0←1
︸ ︷︷ ︸

computed at the sink

) and (AH1→2
︸ ︷︷ ︸

collected

=?AH2←1
︸ ︷︷ ︸

collected

)

Phase 6: Excluding compromised nodes and routing graph fix. Once any nodes
are tagged as suspicious, they should be excluded from the sensor network immediately.
To do so, the sink broadcasts the IDs of the tagged nodes across the network, particu-
larly to those nodes around the compromised ones. This can be done using broadcast
authentication algorithms e.g. µTESLA [13]. This packet also initiates the selection of



new cluster heads to replace the excluded ones, and then incorporates new heads into the
routing graph. The newly joined nodes send back their IDs to the sink to check if they
are allowed to join the network. The sink acknowledges back with the most up-to-date
AH values for the new cluster heads.

3.4 The security analyses

In this section we give the major security analysis results. Their proof details can be
found in [20].

Theorem 1. Any injection attacks can be detected by the COOL protocol.

Corollary 1. The report dropping attack at the relay nodes can also be detected by the
COOL protocol.

Corollary 2. If there are m compromised nodes, our scheme removes at most 2m nodes
including those m compromised nodes.

Theorem 2. The AH value collection process is secure: correct AH values can be re-
trieved from the received AH report; no AH value may be compromised or dropped
without being detected.

4 Optimizations
In this section, we discussion two optimizations to the basic design.

4.1 Drop-COOL: combining en-route filtering schemes

In the basic COOL protocol false reports are forwarded all the way to the sink.
While the sink can detect these false reports, it is just too late since the energy has
already been consumed along the routing paths. It may become even worse if a lot of
false reports are injected before the COOL protocol is activated to collect AH values.
We therefore propose Drop-COOL, a hybrid scheme that integrates an en-routing filter-
ing scheme [18, 22].

The Drop-COOL scheme works as follows. The system initializes according to both
the basic COOL and the SEF [18] protocols. In addition, each node is assigned an in-
teger threshold which is the maximal number of false reports that the node can forward
in one round. In the packet forwarding phase, detected false reports up to this thresh-
old are forwarded while following ones are discarded. An additional AH hash value
— drop hash value, is maintained on each node that drops false reports. It is updated
incrementally each time when a false report is detected and dropped. To improve the ef-
fectiveness of Drop-COOL, a node may try to forward these false reports with different
source CH IDs, which can trigger collecting and detecting more paths and thus expose
more compromised nodes in one round.

The Drop-COOL protocol combines the advantages of both COOL and SEF proto-
cols. It detects and excludes compromised nodes while saves the energy from routing
less false reports. The energy spent to route a small number of false reports is small
compared to the savings after excluding compromised nodes. It removes the worst case
overhead that the basic COOL protocol has on routing false reports.



We next illustrate that the Drop-COOL does not affect the ability to locate com-
promised nodes although random false reports are dropped in the middle. Due to the
introduction of the drop hash value, we have for a well-behaved node in the routing
graph, the set of forwarded and dropped messages should be the same as the set of
received and locally generated messages. By collecting and comparing the AH hash
values of these message sets, we can adjust the node test to

(AH(MESSAGE f orwarded + AH(MESSAGEdropped ) mod M = (AH(MESSAGEreceived
+ AH(MESSAGElocal) mode M

The link test is unaffected and an inconsistent node or link test result exposes at least
one compromised node.

4.2 Hi-COOL: a hierarchical authentication scheme

To further reduce the overhead, we propose Hi-COOL, a hierarchical approach
which groups multiple adjacent nodes in the routing graph as a super node. We only
collect hash values with respect to this super node, and refine the collection if a super
node is found problematic.

The Hi-COOL scheme works as follows. First the sink picks up an integer number
l and forwards this integer with the “hello” message (for collecting the routing graph).
The integer value is decremented for each hop downstream along the routing path and
reset after reaching zero. A node sets itself to be the head of a super node if it receives l
and be the leaf of a super node if it receives zero. If a node receives two values from two
upstream nodes, it picks up the smallest one. In Fig. 5 nodes s1 to s5 form a super node
in which s2, s4, and s5 are leaf nodes while s1 is the head node. In the phase to collect
the AdHASH values, only the incoming hash values to this super node and the outgoing
hash values from this super node are collected. For example hash values AH23 , AH32 are
omitted. The link test at the super node level is processed the same as the basic COOL
— a failed link test removes two involved nodes. However an inconsistent (super) node
test results in one additional round of hash value collection such that we can determine
the exact location of the compromised node within the super node. In the second round,
we only collect hash values from these inconsistent super nodes.

���������	�

�	

��	



�����������	�

�	

��	



�����	�	��	�

�	

��	


�� ��� ����

�����	

��	
�

�������


�������� 
�!������� 
�
�������"�������� 
�!������� 

������

Fig. 4. Reducing routing energy through combined en-
route filtering.

����
�����	

�
��	�

�����	

�
��	

���


��
����

Fig. 5. Hierarchical authentication
with super nodes.

To ensure high level security, in the routing graph collection phase, each node
should reply with its received integer number. In addition, the head of each super node
may need to collect all internal hash values. More details can be found in [20].



5 Limitations of the COOL protocols
The limitations of the COOL protocol are: (1) It is possible that a subregion is iso-

lated from the sink. Without having the information about a cluster head in the routing
graph collection phase, the sink cannot identify its status and decide if it is compro-
mised or not. (2) Signal blocking or collision is another source of attack, if normal
communication cannot be ensured between two nodes. Both of two involved nodes are
excluded while the nodes themselves may not be hacked.

6 Performance Evaluation
6.1 Settings

To evaluate the effectiveness of the proposed COOL protocols, we simulate a sensor
network with 450 cluster head nodes uniformly distributed in a field of 400x400m2 area.
Each sensor node is Mica2 running TinyOS [7] operating at 19.2Kbps data rate, with
battery voltage 3V. It takes 16.25/12.5 µJ to transmit/receive a byte [18]. This will be
referred as the baseline setting in the rest of the paper. The sink is located at (20,20) and
the communication range of each node is 40m. These sensor nodes form a multihop
routing network using the directed diffusion routing algorithm [2]. A normal packet is
of 24 bytes long, a MAC is of 8 bytes (64 bits), and an incremental hash value is of 16
bytes (128 bits). The evaluation is based on false report injection attacks. All results are
averaged from 100 different runs.

6.2 The overhead

The protocol overhead comes from four sources: (i) AH hash value computation
overhead; (ii) hash value collection overhead; (iii) routing graph discovery overhead;
and (iv) routing false reports overhead. Next we study them in more detail.

(i) Computation overhead. The computation overhead is for updating incremental
hash values at each sensor node. As the incremental hash is maintained per link based,
a received report updates two AH values on the relay node. The updates are done in-
crementally with the overhead mainly from computing the standard hashing MD5() on
the input report. MD5() intermediate result is used to update both AH values. Our sim-
ulation results show that the incremental hash computation overhead is about twice of
the overhead of one RC5 [14] computation (used in [18, 7]), that is, 30µJ per node. It is
small and thus omitted in the rest of the discussion.

(ii) Hash value collection overhead. The main overhead of the COOL protocol
comes from collecting hash values across the network. We first induce a theoretical
formula about this overhead. Assume the routing graph is a b-nary balanced routing
tree with height O(logb(N)) where N is the total number of nodes in the graph. Since
the hash value collection is per problematic routing path based, the number of node-to-
node transmission T for one path is,

T = (1+2+3+ ...+H) · (2 ·k +M) =
H · (H +1)

2
· (2 ·k +M) (2)

H = logb(N)

where H is the height of the b-nary tree, N is total number of sensor in the field, k is the
length of the incremental hash value, and M is the length of the MAC value. From the



equation, T is in the range of O((logN)2). Since we need to exclude all m compromised
nodes, we may need to collect from m disjoint paths or detect in m rounds. Therefore
the worst case hash value collection cost is O(m·(logN)2).

We next present the average number of rounds to exclude all compromised nodes
in Fig. 6. In the experiment, false reports are randomly injected from the compromised
nodes and we start a new detection round if 30 false reports are received. As expected
it requires more rounds when there are a larger number of compromised nodes. On
average we can detect and exclude more than 10 nodes in one round when more than
30 nodes are compromised.

Fig. 7 illustrates the total energy overhead for collecting hash values in multiple
rounds. From equation 3, the AH collection cost is proportional to the number of com-
promised nodes and to the square of the tree height, these two factors are used as the x
and y axes respectively. To change the tree height, we deploy in a different square field
with the same node density, e.g. 1000 nodes are distributed in a field of 600x600 m2 .
The tree height varies from 9.2 to 28.5.

The trend confirms what we observed from equation 3. For example, the energy
overhead is about 0.87J with 20 compromised nodes and the tree height 13.6. It in-
creases about 2 times to 1.56J if the number of compromised nodes increases 2 times to
40; It increases about 4 times to 3.89J if the tree height increases about 2 times to 28.4.

We also present the results using the Hi-COOL scheme. It effectively reduces the
hash value collection cost. For example, when 20 nodes are compromised, the Hi-
COOL overhead is 0.99J or 61% of the baseline setting (1.61J).

In collecting the results, we perform a simple optimization. For the two nodes of
each link, they may report the same AH() value e.g. both nodes are healthy nodes. We
therefore only need to transmit one AH hash value with two MACs to the sink.

number of compromised nodes
10 20 30 40 50 60 70 80

Rounds 2.1 2.4 3.5 4.0 4.5 5.3 6.1 6.5

Fig. 6. The number of rounds to exclude all
compromised nodes.

200*200(H=9.2)

300*300(H=13.6)

400*400(H=18.4)

500*500(H=23.5)

600*600(H=28.5)

10
20

30
40

50
60

70
80

2

4

6

8

10

12

Area and Tree Height

Error Node Number

E
ne

rg
y 

(J
)

Base COOL 

HI−COOL 

Routing Graph 

Fig. 7. Hash value collection overhead.

(iii) Routing graph overhead Fig. 7 also illustrates the energy overhead to collect
the routing graph. Compared to the hash value collection overhead, it is usually small
ranging from 0.5J when the tree height is 9.2 to 2.0J when the tree height is 28.5.

(iv) The overhead to route false reports. Fig. 8 illustrates the wasted routing en-
ergy in forwarding false reports. As we discussed, the sink has the option to start the
hash value collection phase after accumulating a number of false reports. Clearly if we
increase the threshold, the routing overhead increases as well. The benefit of accumulat-
ing a reasonable larger number of false reports is that we increase the chance that these
false reports are from more problematic paths. They can then detect multiple paths and



reduce the total number of rounds. For example, if we detect after receiving one false
report, we may need m rounds to exclude all m compromised nodes; on the other hand,
we may need only m/2 round if we set the threshold to be 2 and these two false reports
are always from 2 different compromised nodes on different routing paths. However,
our experiments show that the difference is not significant (with one or two rounds dif-
ference). In addition, if the threshold is set larger than 30, the number of rounds does not
change much but the wasted energy increases drastically. Therefore we set the threshold
to 30 in the paper.

6.3 The savings

We next study the benefits from applying COOL protocols and compare it with an
en-route false report filtering scheme [18]. As discussed, the savings comes from two
sources: the communication savings and the computation savings. The latter is omitted
as it is usual very small.

10
20

30
40

50
60

70
80

10
20

30
40

50
60

70
80

0

1

2

3

4

5

Error Node NumberAccumulated Error Pkg Number

R
ou

tin
g 

E
ne

rg
y 

(J
)

Fig. 8. The overhead to route false reports.

10
20

30
40

50
60

70
80

10

20

30

40

50

60

70

80

10

20

30

40

50

60

Error Node NumberAccumulated Error Pkg Number

T
ra

ns
m

itt
ed

 E
rr

or
 P

kg
 N

um
be

r 
P

er
 N

od
e

Base COOL 

Hi−COOL 

Fig. 9. Comparing the overhead to en-route fil-
tering schemes.

Let us compare the overhead from different protocols. The overhead in the COOL
protocol contains the energy to collect hash values, to discover routing graph, and to
route false reports to the sink. The overhead in the SEF protocol is from routing false
reports before detecting and dropping them. The exact number of hops varies with the
key sharing scheme and the number of compromised nodes. For comparison purpose,
we assume on average each false report is dropped after 5 hops in the paper.

In Figure 9, x and y axes are the detection trigger threshold and the number of
compromised nodes in the network respectively. Each point in the figure is a number of
false reports averaged to each compromised node. It is a break even point at which the
overhead to route and drop this amount of false reports in SEF equals the overhead in
the COOL protocol. For example, with 20 compromised nodes and trigger threshold set
at 30, the number is 25 reports meanings that, if SEF routes and drops 500 reports (=25
reports/node×20node) in 5 hops, the energy it wastes is the same as all of the overhead
in the COOL protocol.

In addition, consider that the scheme needs to spend 3.3 rounds and a round is trig-
gered at 30 false reports, there are another 100 injected false reports (=30 reports/round
× 3.3 rounds). Therefore the COOL protocol outperforms the SEF if each compromised



node injects more than 30 reports (=25 reports/node + 100 reports/20 nodes). This is
very small. For example, as suggested in [21], a compromised node may inject a faked
report every 10 seconds. At this rate, we outperform SEF in 300 seconds or 5 minutes.
With the Hi-COOL optimization, it is further reduced to 4 minutes, a 20% reduction.
Of course, depending on the pattern that the false reports are injected, this number may
vary but the results show that the COOL overhead is very modest.

7 Related Work
Extensive research has been done on sensor network security. Karlof et al. [9] iden-

tified several attacks for a multihop routing based sensor network.
Marti et al. proposed to monitor each node by a neighboring watchdog node. Wang

et al. [15] improves the scheme through the collaborative decision of neighbors around a
suspicious node. Both schemes have limitations [12] as the watchdog node may be com-
promised as well and multiple compromised nodes can collude to attack. The schemes
to locate compromised nodes share some similarity with the approaches to detect faults
in sensor networks [8, 11, 4]. However the significant difference lies in that a faulty
node always returns a wrong report while a compromised node is smarter e.g. it may
inject false reports but communicate normally with the sink.

En-route false data filtering schemes [18, 22] are proposed to actively detect and
drop false reports early in the routing minimizing the impact of false report. In these
schemes, each data report is attached with several MACs generated from different keys
that are distributed probabilistically [18], set up before routing [22], or refreshed peri-
odically [21]. However, those schemes also have limitations as compromised nodes are
left undetected, which causes severe consequences in the long run.

Algorithms have been proposed to securely manage keys in sensor network. Es-
chenauer and Gligor [5] proposed a key pre-distribution scheme in which each sensor
randomly selects a subset of all keys before deployment; Protocols were then devel-
oped for shared key discovery and path-key establishment. Improvements were later
proposed for enhancing security [3] and achieving higher probability of key establish-
ment [10]. Zhang and Cao [21] proposed to represent keys as group key polynomials
whose shares are distributed around neighbors. New keys can be re-generated collabo-
ratively by neighbors from these shares achieving better security and resilience.

8 Conclusion
In this paper we introduced the COOL protocol and its optimizations based on the

provably secure incremental hash function AdHASH to detect and locate compromised
nodes effectively. We first discussed how to securely maintain and collect AdHASH val-
ues on sensor nodes, and then use these values to perform node and link tests to expose
the compromised nodes. Our experimental results showed that the COOL protocols are
very effective and introduce very small overhead to the network.

Acknowledgment
This work is partially supported by the U.S. National Science Foundation under

grants CCF CAREER 0447934 and CCF 0430021.



References
1. M. Bellare and D. Micciancio, “A New Paradigm for Collision-free Hashing: Incrementality

at reduced cost,” In Eurocrypt’97, LNCS 1233, 1997.
2. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: a Scalable and Robust

Communication in Wireless Sensor Networks,” In 5th IEEE/ACM Mobicom, pages 174-185,
1999.

3. H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes for Sensor Net-
works,” In IEEE Symposium on Security and Privacy”, 2003.

4. P. Chew and K. Marzullo, “Masking Failures of Multidimensional Sensors,” In Proc. of the
10th Symposium on Reliable Distributed Systems, pages 32-41, 1991.

5. L. Eschenauer and V. D. Gligor, “A Key-Management Scheme for Distributed Sensor Net-
works,” In Proc. of the 9th ACM Conference on Computer and Communication Security, pages
41-47, November 2002.

6. W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An Application-Specific Protocol
Architecture for Wireless Microsensor Networks,” IEEE Transactions on Wireless Communi-
cations, vol 1:4, pages 660-670, 2002.

7. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “System Architecture Directions
for Networked Sensors,” In ASPLOS IX, 2000.

8. C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Diagnosis of Sensor Networks,” In IEEE in-
ternational Conference on Communications, June 2001.

9. C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor Networks: Attacks and Coun-
termeasures,” In IEEE international workshop on Sensor Network Protocols and Applications,
pages 113-127, 2003.

10. D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed Sensor Networks,” In Proc.
ACM CCS, 2003.

11. K. Marzullo, “Tolerating Failures of Continuous-valued Sensors,” In ACM Transactions on
Computer Systems, November 1990.

12. S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating Routing Misbehavior in Mobile Ad
Hoc Networks,”, In MOBICOM, 2000.

13. A. Perrig, R. Szewczyk, V. Wen, D.E. Culler, and J.D. Tygar, “SPINS: security protocols for
sensor networks,” In Proc. of Seventh Annual International Conference on Mobile Computing
and Networks, 2001.

14. B. Schneier, “Applied Cryptography,” 2nd Edition, John Wiley & Sons, 1996.
15. G. Wang, W. Zhang, G. Cao, and T.L. Porta, “On Supporting Distributed Collaboration in

Sensor Networks,” In IEEE MILCOM, 2003.
16. X. Wang, Y. Yin, H. Yu, “Finding Collisions in the Full SHA-1 Collision Search Attacks on

SHA1,” In Crypto’05, 2005.
17. X. Wang, D. Feng, X. Lai, H. Yu, “Collisions for Some Hash Functions MD4, MD5, HAVAL-

128, RIPEMD,” In Crypto’04, 2004.
18. F. Ye, H. Luo, S. Lu and L. Zhang, “Statistical En-route Detection and Filtering of Injected

False Data in Sensor Networks,” In IEEE INFOCOM 2004, 2004.
19. O. Younis, and S. Fahmy, “Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid,

Energy-Efficient Approach,” In INFOCOM, 2004.
20. Y. Zhang, J. Yang, L. Jin, and W. Li, “Locating Compromised Sensor Nodes through Incre-

mental Hashing Authentication,” Technical Report, University of Pittsburgh, 2006.
21. W. Zhang and G. Cao, “Group Rekeying for Filtering False Data in Sensor Networks: A

Predistribution and Local Collaboration-Based Approach,” In INFOCOM, 2005.
22. S. Zhu, S. Setia, S. Jajodia, P. Ning, “An Interleaved Hop-by-Hop Authentication Scheme

for Filtering of Injected False Data in Sensor Networks,” In Proceedings of IEEE Symposium
on Security and Privacy, Oakland, California, May 2004.


