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Abstract
Wireless sensor networks (WSN), composed of a large number
of low-cost, battery-powered sensors, have recently emerged as
promising computing platforms for many non-traditional applica-
tions. The preloaded code on remote sensors often needs to be up-
dated after deployment in order for the WSN to adapt to the chang-
ing demands from the users. Post-deployment code dissemination
is challenging as the data are transmitted via battery-powered wire-
less communication. Recent studies show that the energy for send-
ing a single bit is about the same as executing 1000 instructions in
a WSN. Therefore it is important to achieve energy efficiency in
code dissemination.

In this paper, we propose novel update-conscious compila-
tion (UCC) techniques for energy-efficient code dissemination in
WSNs. An update-conscious compiler, when compiling the modi-
fied code, includes the compilation decisions that were made when
generating the old binary. The compiler employs a detailed energy
model and strives to match the old decisions for a more energy-
efficient result. In most cases, matching the previous decisions
improves the binary code similarity, reduces the amount of data to
be transmitted to remote sensors, and thus, consumes less energy.
In this paper, we develop update-conscious register allocation and
data layout algorithms. Our experimental results show that they can
achieve great improvements over the traditional, update-oblivious
approaches.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers; C.2.3 [Network Operations]:
Network Management—Reprogramming

General Terms Design, Languages, Performance

Keywords Register allocation, Sensor networks, Code dissemina-
tion

1. Introduction
The wireless sensor network (WSN) [3, 13, 14] has recently
emerged as a promising computing platform for many nontradi-
tional applications such as wildfire monitoring in forests, and intel-
ligence surveillance in the battle field. A WSN usually consists of
hundreds or thousands of low-cost, battery-powered sensor nodes
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that are preloaded with application code and data, and then de-
ployed into the field to track events of interest. Sensing results are
constructed into data packets, and routed back to a sink node which
is typically more powerful, user accessible and has few energy con-
straints. In contrast, the sensor nodes are usually left unattended
after deployment, so they are extremely energy and storage con-
strained. Of all constraints in a WSN, the energy constraint is more
predominant and largely determines the lifetime of the network.

Due to the changes of user requirements and environmental con-
ditions, the preloaded program code and data on wireless sensors
often need to be updated. For example, a WSN may be deployed
in a field where there is limited familiarity of, e.g., deep ocean or
wild nature. In those environments, people first collect and analyze
the field data and then develop more effective sensing functions
to process more interesting and important phenomena. Such func-
tions are often missing in the preloaded code. A WSN can also be
deployed inside a building to detect water damage, sound propa-
gation, earthquake damage, etc. Preloading all functions into the
sensors is infeasible due to their limited memory sizes. In addition,
it may also be infeasible to deploy a new WSN for every new task.
Hence, reprogramming sensors on demand is more economical and
practical [20].

Since sensor nodes are left unattended (or even become un-
reachable) after deployment, reprogramming can only be done
through wireless communication which is expensive in terms of
energy consumption. For large WSNs where the sink cannot reach
every node through broadcasting, updates can only be transmitted
hop-by-hop within the WSN, consuming significant energy. Re-
cent studies have shown that sending a single bit of data consumes
about the same energy as executing 1000 instructions [29, 28]. As
a result, it is essential to conserve the energy in a WSN during the
code and data dissemination, especially when the update happens
frequently.

The current code dissemination approaches can be categorized
according to what is to be transmitted over the network. The sim-
plest solution, employed by XNP (the default code distribution
scheme in TinyOS[31]), is to transmit the complete updated binary
code to replace the old version on sensors. Another approach —
the diff-based design — compares the code of successive versions
and generates an edit script that summarizes the difference. Only
the script is transmitted to the remote sensor where the new code is
re-generated from both the old image and the edit script. Since less
data is transmitted over the network, and the edit script is usually
simple and can be easily interpreted by the sensor, the diff-based
approach significantly improves energy-efficiency and has become
more popular in WSNs [28, 25, 12, 23, 16, 7].

Code can also be disseminated at different levels. Some recent
work introduced a small virtual machine [20] or a dynamic linker
[7, 16] on remote sensors. Instead of binary instructions, the code is
represented at a higher level, e.g., virtual machine primitives, which



can minimize the code difference in many cases. The tradeoff is
that such approaches introduce high runtime overhead and may
consume more energy in the long run.

Though the concept of incremental update was incorporated in
the above approaches, the code differences are derived from bina-
ries generated using the conventional compiler’s code generation
methods, with possibly some optimizations. Therefore, a simple
change in the source code may result in many changes in the fi-
nal binary. This has limited the diff-based approaches to only small
updates such as fixing a bug [28].

In this paper, we propose update-conscious compilation (UCC)
techniques that target at improving the code similarity between the
binary code and its previous version. Specifically, we attempt to
minimize the instruction differences so that the update transmission
over a WSN is greatly reduced. However, this may result in a
compromise in code execution time which is a concern since the
new code is executed on remote sensors hereafter. We consider this
tradeoff and generate the new code in a way that the overall energy
consumption is reduced in the long run. After generating the new
code, the differences are summarized in a small script which is then
transmitted to the remote sensor. The new code is generated on the
remote sensor through interpreting the update script to change the
old binary. This concludes the code dissemination process.

The remainder of the paper is organized as follows. The
overview of update-conscious compilation is presented in Sec-
tion 2. We discuss update-conscious register allocation in Sec-
tion 3, and update-conscious data allocation in Section 4. The ex-
perimental results are presented in Section 5. More related work is
discussed in Section 6. Finally, we conclude this paper in Section 7.

2. Overview
The conventional compilation takes the following steps to gener-
ate a binary code from the source code, as depicted in Figure 1.
First, the compiler converts the source code S into an intermediate
representation ir. Next, the compiler optimizes the ir for several
iterations, and produces the optimized intermediate representation
IR. Finally, the code generation stage uses IR to generate the bi-
nary code E by applying data allocation, code placement, register
allocation, etc.

Our proposed update-conscious compilation is performed at the
code generation stage, i.e. from IR to E. This helps to preserve
the performance improvements from the optimization passes. In
this paper we focus on the register allocation and data allocation
techniques. For clarity, we assume that the optimization passes are
independent of register allocation and data allocation, and other
optimizations will be investigated in our future work.
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Figure 1. The sink-side update-aware compilation.
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Figure 2. The sensor-side code update and execution.

When S is updated to S’ (Figure 1), ir and IR are also updated
to ir’ and IR’ respectively. Let ∆ represent the differences be-
tween the IR’ and its previous version IR. With ∆, the compiler
can analyze and decide how to generate the binary E’ such that its
difference from E, denoted as U, is small. The decision is made by
considering the energy gain and cost from transmitting the code to
versus executing the code on remote sensors. Finally when E’ is
generated, U is produced and summarized in a script which is then
disseminated to the sensors.

The code update on remote sensors is relatively simple, as il-
lustrated in Figure 2. The update script U is interpreted locally
to change the old binary E to E’. Changes may include insert-
ing/removing instructions, constant updates, register name replace-
ment, etc. As a comparison, previous schemes such as code update
with virtual machine on sensors [20], or using a dynamic linker [7]
do not store the executables in sensors. Thus, they tend to introduce
much more runtime overhead and consume more energy than our
binary level update scheme.

2.1 The power model and its application in compilation
While improving the code similarity is our goal, it is also essential
to consider its impact to energy consumption when the code is
executed on remote sensors. In general, improved code similarity
results in a smaller update script, and thus less transmission energy
consumption. In some cases, slightly slower code may still have
better energy-efficiency. For example, it might worth the effort to
reduce the update script by one word because the new code is not
executed very frequently but very necessary on the sensors. One
can also argue for a counterexample. To achieve a good balance
between transmission energy and execution energy, we need to first
develop a power model for our framework.

We select the Mica2 Mote [34] as our test bed while the tech-
niques are applicable to other types of sensors as well. Mica2 Mote
includes a 7.3Mhz CPU, 128KB program flash memory, 512KB
measurement flash memory, and 4KB configuration EEPROM. It
can transmit data at 38.4Kbps. For Mica2 Motes, transmitting a
data bit takes more CPU cycles and more overhead than execut-
ing an instruction. In Figure 3, we show the current that the sen-
sor draws at different operational modes [29]. From these param-
eters, prior work [29] showed that for a typical battery capacity of
2700mAH, a Mica2 node that stays active for about 15 minutes per
day can last for about one year. In such a sensor network, transmit-
ting more data adds buffering overhead and increases the possibil-
ity of signal collision. A recent study showed that for such sensors,
transmitting a single bit consumes about 1000 times more energy
than executing an ALU instruction [28].

Mode Current Mode Current
CPU active 8.0mA Radio Rx 7 mA
CPU idle 3.2mA Tx(+10dB) 21.5mA
CPU Standby 216µA EEPROM read 6.2mA
LEDs 2.2mA EEPROM write 18.4mA

Figure 3. The power model for Mica2.

Next we collect program execution profiles to estimate how
often an updated code will be in use. This will help make good
update decisions. For example, assume we need to make a decision



whether to add one more instruction in the final binary but save one
instruction word in transmission. It is overall energy-efficient only
if the new instruction is executed in less than 16,000 times (16-bit
word width × 1000).

Let us consider another example that requires the knowledge of
the target WSN. Typical sensors need to accomplish two types of
tasks: data processing and data transmission. Thus, the correspond-
ing program code can be categorized into two types as well. For
large multi-hop WSNs that have thousands of nodes, a data report
may jump 70 or more hops before reaching the sink [35]. An inter-
esting event may invoke the data processing code in the originating
sensor once but the data transmission code 70 times along the path
to the sink. As a result, it is more energy-efficient to update data
processing code with the highest similarity to its previous version,
but update data transmission code with one that consumes the low-
est energy (and less similarity to its previous version).

2.2 Disseminating the update
To distribute the new code onto remote sensors, the update is
summarized in an edit script (U in Figure 2) and then transmitted
over the WSN. Such an edit script usually contains several simple
update primitives such as copy, insert, replace, and remove.

The details of update script and its dissemination may be cou-
pled with the network protocol design [11, 17]. The script is usu-
ally divided into a sequence of data packets. These packets may be
encrypted and/or authenticated for security protection [18, 8]. The
packets may also be grouped so that when remote sensors receive
groups out of order, they are still able to perform updates indepen-
dent of the receiving order.

The design of the script primitives also impacts the size of
the script. To facilitate the description of our compilation tech-
niques, we adopt four update primitives similar to those in prior
work [28] — insert, replace, copy, and remove. Both the
insert and replace primitives have one-byte opcode and n bytes
of data/instructions to be incorporated. The copy and remove prim-
itives take one byte each and specify the size of old data/instruction
block to be copied or removed.

3. Update-conscious Register Allocation
As mentioned in the overview, we perform update-conscious com-
pilation in the code generation stage which typically involves regis-
ter allocation, data and code placement. We focus on the former two
tasks in this paper and will investigate the code placement problem
in our future work. In this section, we discuss the update-conscious
register allocation design.

We will first illustrate our strategy using a motivational example
and formulate the update-conscious allocation problem as a mixed
integer non-linear programming problem which targets at both per-
formance improvement and energy minimization. It is not a linear
problem due to the non-linear specifications of the update energy
consumption. We then discuss how to approximate the non-linear
specification using an integer linear programming (ILP) program.
The latter can be solved magnitudes times faster than the former
for problems of similar sizes.

3.1 Example: register allocation and code similarity
While the register allocation problem has been well studied with
great success in the past two decades [4, 10, 9, 22, 36, 15], no algo-
rithm has been proposed to address the update problem uncovered
in sensor networks. In Figure 4, we illustrate why different regis-
ter allocation decisions can greatly impact the code similarity, and
the update cost. In this example, two variables a and b initially
have disjoint live ranges and can be allocated to the same regis-
ter R1 (Figure 4(a)). Assume a small code change extends b’s live
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Figure 4. Allocating different registers for improved energy effi-
ciency.

range into a’s. If there are enough free registers, a modern register
allocator will assign different registers to them, as depicted in Fig-
ure 4(b). Variable b is assigned to a new register R2, resulting in a
name change for all the uses in subsequent statements in the state-
ment range {5,15}. In contrast, an alternative update-conscious de-
cision may allocate b to R2 only for the range {5,11} where R1 is
not free, and match the old allocation for the range {12, 15} with
one extra mov instruction, as shown in Figure 4(c). By comparing
these two solutions, it is clear that while the solution (b) achieves
better code quality, the solution (c) results in less update cost. The
discrepancy in energy consumption between data transmission and
instruction execution makes the solution (c) more appealing as it
consumes less energy unless the code is very frequently executed,
or the update is extremely rare.

3.2 Update-conscious register allocation
The basic idea of update-conscious register allocation (UCC-RA) is
to retain mostly the old register assignments and perform new regis-
ter allocations to changed and new instructions with preferences to
the decisions made by the old register allocator. To achieve this, we
first identify IR instructions as “changed” or “non-changed”, and
then group successive instructions of the same type into chunks. A
chunk is considered as “non-changed” if (i) all its instructions are
not changed, and (ii) the chunk size is larger than K instructions,
where K is a predetermined threshold to prevent from overly small
chunks. Otherwise, it is merged with neighboring chunks to form a
“changed” chunk.

Our register allocator then allocates registers for each changed
chunk, and gradually matches the register assignment, or alloca-
tion decisions from both changed and non-changed chunks for se-
mantic correctness. Decisions for changed chunks are made by our
UCC-RA while decisions for unchanged chunks are taken from
the old code before the update. The two decisions are made con-
jointly. If a variable’s live range spans across the chunk boundary,
from “changed” to “non-changed” or vice versa, then the assign-
ment in the “changed” chunk gives preference to the assignment in
the “non-changed” chunk to maximize the similarity. However, this
preference may not always be adopted by the allocator. If the allo-
cator decides to use a new register in the “changed” chunk, then
a mov instruction between the two chunks should be inserted to
move data between the new and the old registers. Register prefer-
ence should also be given to the same variables on different control
flow paths (they might be of different chunk types). However, if the
allocator chooses a different register, then a mov instruction is also
necessary.

Clearly, placing too many inter-register movement instructions
requires not only transmitting more update data to remote sensors
but also executing more instructions at runtime. Therefore it is
desirable to develop a precise cost-benefit model such that an inter-
register movement instruction is inserted only if it is estimated to
be energy-efficient.
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Figure 5. Decision variables.

Preferred-register tag. In UCC-RA, we tag each variable in an
unchanged IR instruction with the register name that was assigned
in the old binary. A preferred-register tag is a hint to improving
code similarity in UCC-RA.

3.3 Formalizing the update-conscious register allocation
Motivated by the 0/1 integer linear programming research for reg-
ister allocation [9], we formalize our update-conscious register al-
location as a non-linear integer programming problem. We use a
simple example in Figure 5 to explain our proposed procedure. The
code contains several instructions: the first two are the definitions
of variable a and b respectively, while the third one uses both vari-
ables. Let us assume at statement (6), a is dead but b is still alive,
and the preferred-registers of a and b are R1 and R2 respectively.

The decision variables. For the code chunk in Figure 5(a), we
first introduce a set of decision variables that represent the register
assignments we need to make at each program point. For example,
If variable a is allocated to register R1 at statement (1), then we have
XR1

def.a.1 = 1 and ∀Ri, Ri 6= R1, XRi
def.a.1 = 0. Here XRi

def.a.s is a
decision variable to show if variable a is assigned to the register Ri
at statement s. A decision variable X∗∗ can take value 0 or 1, with 1
meaning that the corresponding assertion is true, and 0 otherwise.
As another example, if we decided to insert an instruction “mov
R2 to R3” for b before statement (4), we set XR2

mov.out.b.4 = 1,
XR3

mov.in.b.4 = 1, and all other mov decision variables X∗mov.∗.b.4

as 0. As discussed, such a mov instruction may be inserted to release
R2 for other variables, or to match the old assignment of b to R3
after statement (4). The following is a full list of decision variables
that we used in UCC-RA.

a/s/Ri variable a / statement s / Register Ri (1≤i≤31);

XRi
mov.out.a.s if a is moved from Ri to another register at s;

XRi
mov.in.a.s if a is moved from another register to Ri at s;

XRi
def.a.s if a is allocated to Ri at its definition point s;

XRi
cont.a.s if a is allocated to Ri after its def point s;

XRi
lastUse.a.s if a is allocated to Ri at its last use point s and a

is dead after s.
XRi

use.a.s if a is allocated to Ri at s, but not in Ri after s;
statement s is not the last use.

XRi
useCont.a.s if a is allocated to Ri at s, and is also in Ri after

s; statement s is not the last use.

XRi
st.a.s if a is spilled from Ri to memory after s;

XRi
ld.a.s if a is loaded from memory to Ri before its use

point s;
Xmem

cont.a.s if the variable is kept in memory after the state-
ment s;

When defining proper decision variables, we aim to keep their
total number small so that the solver takes less time to find a solu-
tion. For example, we introduce two decision variables XRi

mov.in.a.s

and XRi
mov.out.a.s instead of a more intuitive XRi←Rj

mov.a.s (move a
from Rj to Ri at statement s) because of the following reason. As-
sume there are 31 registers; the one-variable definition would intro-
duce 31×30 mov decision variables for each variable at a program
point. This will increase the problem size and slow down the solver.
Instead, we decouple the mov’s source register from the destination
register such that only 31×2 decision variables are required. Then,
we simply combine correctly the corresponding move-in and mov-
out variables to implement the register move.

The constraints. With above decision variables, we convert the
register allocation problem into a problem of assigning value 0
and 1 to these variables. To ensure that the value assignment can
be mapped back to a valid register assignment, these variables are
subject to a set of constraints.

We first define the constraints for variable definitions. Each
variable should be allocated to one and only one register at its
definition point. Thus we have, for each variable a at its definition
point s, one and only one XRi

def.a.s can be 1, or,

X

∀Ri

XRi
def.a.s = 1. (1)

To ensure valid inter-register movements, we define constraints
on mov decision variables as well. Since we may and may not insert
a move instruction at a program point; and the move-in and move-
out decision variables should appear in pairs, we have:

X

∀Ri

XRi
mov.out.a.s ≤ 1

X

∀Ri

XRi
mov.out.a.s =

X

∀Ri

XRi
mov.in.a.s (2)

At a statement s, variable a may be loaded from the memory,
or come from inter-register movement. After defining the variable,
the value in the register may be spilled to the memory, or moved to
another register, or stay for later use. Thus we have:

XRi
st.a.s ≤ XRi

def.a.s + XRi
mov.in.a.s

XRi
mov.out.a.s ≤ XRi

def.a.s

XRi
cont.a.s ≤ XRi

def.a.s + XRi
mov.in.a.s (3)

For the code spill at a definition point, only a store instruction
may be possibly generated. Thus, we have:

Xmem
cont.a.s ≤

X

∀Ri

XRi
st.a.s (4)



We next define the constraints for variable uses. Since we
can know if a use is the last use (through backward analysis),
XRi

lastUse.a.s is always exclusive from (XRi
use.a.s + XRi

useCont.a.s).
In addition, XRi

use.a.s and XRi
useCont.a.s are exclusive, and a use

should be in a register. The above are specified as:

X

∀Ri

XRi
lastUse.a.s = 1; or

X

∀Ri

(XRi
use.a.s + XRi

useCont.a.s) = 1; (5)

At a use point, a variable may be located in a register due to
its use in the previous instruction, or loaded from the memory, or
moved from another register. Depending on whether it is the last
use, we have one of the following two constraints:

XRi
use.a.s + XRi

useCont.a.s ≤ XRi
cont.a.(s−1) + XRi

ld.a.s + XRi
mov.in.a.s

XRi
last.a.s ≤ XRi

cont.a.(s−1) + XRi
ld.a.s + XRi

mov.in.a.s (6)

Since we only generate load spill, or inter-register movement
before the use point, we have:

X

∀Ri

XRi
ld.a.s ≤ Xmem

cont.a.(s−1)

X

∀Ri

XRi
mov.out.a.s ≤ XRi

cont.a.(s−1) (7)

To ensure that each register holds one variable at a time, we
specify, for example, the following constraints at statement (1) and
(6) in Figure 5:

XRi
cont.a.1 + XRi

def.b.2 ≤ 1

XRi
lastUse.a.6 + XRi

use.b.6 + XRi
useCont.b.6 ≤ 1 (8)

For Mica2 micro controllers, we need to enforce another type of
constraint. Each register in Mica2 has 8 bits, i.e. one byte. A 32-bit
integer variable should be allocated to four consecutive registers,
i.e., byte a, a+1, a+2, and a+3 should be in register Ri, Ri+1, Ri+2,
and Ri+3 respectively:

XRi
use.(a).s = X

Ri+1

use.(a+1).s

XRi
use.(a+1).s = X

Ri+1

use.(a+2).s

XRi
use.(a+2).s = X

Ri+1

use.(a+3).s
(9)

At the boundary of changed and unchanged code chunks, and
at the merge point of control flows, we insert inter-register move
instructions to make sure that the values are in proper registers
before their next uses. In our future work, instead of performing
inter-register movements, we will introduce constraints similar to
those in [9] for the merge point of control flows.

The objective function. The goal of our integer programming is
to minimize the objective function on total energy consumption, as
expressed in equation (10) in Figure 6. The equation defines the
total energy consumption of the changed IR chunk under different
register allocation decisions. The notations used in equation (10)
are listed in the right column. Other terms are explained as follows.

Espill specifies the energy consumption due to code spill. It in-
cludes two components: the execution energy and the dissemina-
tion energy. The former has to do with the code quality which is

Etrans the energy consumed to disseminate one instruction in
WSN;

Eexe the energy consumed to execute one instruction. We
use the averaged number here and differentiate the
memory access (load,store) and ALU instructions in
the implementation.

prefer(a, s) the preferred-register for variable a at statement s;
freq(s) the execution frequency count of statement s;

chg(s) if s is an unchanged IR instruction. chg(s)=1 if s has
been changed; =0 otherwise;

spill(a, Ri, s) if variable a was spilled to Ri/loaded back from Ri at
statement s in the old binary;

the main goal of many existing allocators. The latter is not neg-
ligible when a new spill is generated or an old spill is removed.
It is zero for all other cases, i.e. either (1-spill(a, Ri, s))=0 or
(XRi

ld.a.s + XRi
st.a.s) = 0 in the equation (13). For example, if a

is spilled to R1 in both new and old binaries, then we have zero
transmission cost:

for R1, 1-spill(a,R1,s)=0, XR1
ld.a.s + XR1

st.a.s=1
for Ri(Ri 6=R1), 1-spill(a,Ri,s)=1,XRi

ld.a.s + XRi
st.a.s=0

Echanged IR specifies the energy consumption due to changed
IR instructions. It includes both the execution and the dissemination
energy consumption as well. As we can see, no matter which
register allocator is used, a changed IR instruction always results in
a binary instruction that should be disseminated to remote sensors.
Therefore Echanged IR is a constant in the model.

Eunchanged IR specifies the energy consumption due to un-
changed IR instructions. Assume we have an unchanged IR instruc-
tion “a=a+b” and a and b’s preferred-registers are R1 and R2 re-
spectively. If the new allocation decision follows the old allocation
scheme, then there is no dissemination cost, i.e. the same binary
instruction “add R1, R2” is generated. If a is assigned to a differ-
ent register, say R3, and we generate “add R3, R2”, then this new
instruction needs to be disseminated to replace the old one on the
sensor. As shown in equation (12), this component is non-linear —-
one Etrans is introduced for either one or two changes of the two
preferred registers.

Eextra is the extra energy consumption due to inserted inter-
register movements. This term is zero if a traditional compiler
decision is used. Our UCC-RA targets at achieving overall energy
efficiency, i.e. Eextra is positive only when we can gain more
reduction from other components, e.g. Eunchanged IR.

In the above model, X∗∗ are decision variables that need to be
determined by the UCC-RA, while others such as chg(s), freq(s),
etc. are known for a given code chunk. Since equation (12) is
non-linear, the above formulation of UCC-RA results in a mixed
integer non-linear programming problem (MINLP) [24]. While the
speed of MINLP solvers has been improved greatly in recent years
[24], it is still much slower than solving a linear problem. Our
experiments results show that MINLP can be orders of magnitude
slower than a linear problem of similar sizes, i.e., similar number of
decision variables and constraint. We next discuss how to convert
the MINLP problem to an ILP problem through approximation.

3.4 Solving an ILP problem
In this section we model the update energy consumption linearly
such that the UCC-RA can be solved using an ILP solver.

For an unchanged IR instruction with two variables a and b (to
comply with Mica2 AVR ISA, each IR instruction in our model has
at most two different operands). Assume their preferred registers
are R1 and R2 respectively, we model the energy consumption as



Etotal = Echanged IR + Eunchanged IR + Espill + Eextra (10)

where

Echanged IR =
X

∀s

(chg(s) × freq(s) × Eexe) +
X

∀s

(chg(s) × Etrans) (11)

Eunchanged IR =
X

∀s

((1 − chg(s)) × freq(s) × Eexe) +
X

∀s

((1 − chg(s)) × (1 −
Y

∀a

X
prefer(a,s)
def/use.a.s

) × Etrans) (12)

Espill =
X

∀s,a,Ri

(freq(s) × (XRi
st.a.s + XRi

ld.a.s) × Eexe) +
X

∀s,a,Ri

((1 − spill(a, Ri, s)) × (XRi
ld.a.s + XRi

st.a.s) × Etrans) (13)

Eextra =
X

∀s,a,Ri

(freq(s) × XRi
mov.in.a.s × Eexe) +

X

∀a,s,Ri

(XRi
mov.in.a.s × Etrans) (14)

Figure 6. The objective function.

X

∀s

((1− chg(s))× ((1−XR1
use.a...)+ (1−XR2

use.b...)))×Etrans × δ

(15)
where δ = 3/4, a coefficient that approximates the update cost. It

is decided as follows. Assume each variable has equal opportunity
of being assigned and not assigned to its preferred register. For the
instruction with two variables a and b and preferred registers R1
and R2 respectively, there are four possibilities altogether: (i) a is
in R1, b is in R2; (ii) a is in R1, b is not in R2; (iii) a is not in
R1, b is in R2; (iv) a is not in R1, b is not in R2. It is clear that
case (i) has no update cost while each of other three cases needs
to update one instruction. Therefore the averaged update cost is
(3/4) × Costsingle, which decides δ to be 3/4.

After converting the model into an ILP problem, we adopt
a widely used ILP solver — LP solve [2] to find the optimal
assignment of decision variables such that the cost (modeled in
the objective cost function) is minimized. We then map decision
variables back to register assignments, and generate the code and
the corresponding update script as well.

4. Update-conscious data allocation
In addition to register allocation schemes, the data allocation strat-
egy can also affect the similarity between different versions of
code, as illustrated in the example in Figure 7. In the original code
(Figure 7(a)), three variables a, b, and c are allocated with off-
set 0, 2, and 4 respectively, to a base address. Assume the code is
updated by replacing variable a with a constant, and introducing a
new variable d. The existing compiler may generate the data allo-
cation scheme as shown in Figure 7(b), in which all variables are
assigned with new offsets, resulting in three update primitives in
the update script. However, an update-conscious algorithm should
put the new variable d in a’s location, as shown in Figure 7(c), re-
sulting in only one update primitive in the script. On the other hand,
if there was no d in the new code and if we did not reclaim the word
taken by a, we would waste the word in the data segment or more if
the function is recursively invoked. This will increase the memory
footprint on remote sensors.

4.1 Threshold-based data allocation
To address the problem described above, we propose a threshold-
based data allocation mechanism. The intuition is to reuse the
space of deleted variables as much as we can. If there are more new
variables than deleted ones, we will first use up the space of the
deleted variables and then allocate more space. If there are more
deleted variables, then we have two options to choose from: (i)
relocate some old variables; (ii) do not relocate. The first option
does not waste the space resource on sensor node, but it needs to

change the program code because of the relocated variables. The
second option incurs less code changes but leaves “holes” in the
data segments at runtime. As a hybrid of these two options, our
proposed algorithm ensures that the total wasted space is less than
a given threshold — SpaceT . For ease of illustration, we elaborate
on the procedures for variables of word type only. The principle
can be applied to other data types such as array and composite
structures similarly.

First, we collect the following profiles for each function Pi(i ≥
0) in the program. P0 is a dummy function that contains all global
variables.

DelVi the total number of deleted variables;
NewVi the total number of new variables;
Depthi the projected maximal simultaneous instances of Pi;

Usagei(a) the usage of variable a in Pi.

Second, we gradually allocate new variables within each proce-
dure Pi as follows. We do not remove the deleted variables directly.
Instead, we only mark them as deleted variables so that their space
can be reused by new variables. If NewVi ≥ DelVi, we reuse all
the space from deleted variables and allocate extra space to satisfy
the remaining new variables. If NewVi < DelVi, i.e., new vari-
ables cannot reuse all space of the deleted ones, then we compute
that there are Extrai = Deli - NewVi number of words left to be
filled, and move to the next step.

Third, we adjust the data allocation by incrementally relocating
the last variable in each function. We keep moving the last variable
into a “hole” left by a deleted variable, until all the holes are filled.
That is,

X

∀Pi

Extrai × Depthi ≤ SpaceT (16)

As we have shown in Figure 7, such a move will cause changes in
all the instructions that use the last variable. If equation (16) cannot
be satisfied for all procedures, to keep the changes minimum, we
should first serve those that might demand the most runtime mem-
ory but have the least number of uses. That is, we should find a
procedure j such that

Depthj

Usagej(last)
= MAX(

Depthi

Usagei(last)
) (∀i, Extrai > 0) (17)

We then relocate the last variable in procedure j to one deleted
memory word. By doing so, we can shrink the maximal runtime
memory usage by Depthj (as it is the last variable in that proce-
dure), and incur less code changes (as the variable with less usage is
selected). We then decrement Extraj and continue this step until
equation (16) is satisfied.

For example in Figure 7, if d is not introduced, we will reuse a’s
space with c if SpaceT = 0, i.e. no wasted space. This will result
in an edit script with two primitives to update c and d respectively.
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Figure 7. An incremental data allocation example ((a)original source and assembly code; (b)new code and the update script; (c)incrementally
generated new code with a smaller update script.)

This code still outperforms the default scheme in Figure 7(b) which
requires three update primitives.

The data allocation problem may become more complicated if it
is coupled with code generation where data offset are encoded with
instruction types. For example successive instructions using post-
increment addressing (PIA) mode will access successive data in
memory with implicit address increment between two instructions.
If data is relocated, new instructions must be inserted to change
the memory access address in the next instruction. Fortunately, we
experimented with gcc 3.4.3 compiler and found that the PIA
mode is mainly used to access the four bytes of an integer variable
and thus is insensitive to the variable relocation. For this reason, we
do not consider the impact the PIA mode when relocating the data.
If they are used beyond a word boundary, we treat them individually
by inserting new addressing instructions.

5. Experiments
We have implemented our proposed update-conscious register allo-
cation (UCC-RA) and data allocation (UCC-DA) techniques, and
compared them with the results generated by the GNC C compiler
(GCC-RA and GCC-DA). In this section, we discuss our experi-
mental settings and present the results on code quality, energy effi-
ciency, and compilation time.

5.1 Settings
We simulated a sensor network that consists of Mica2 mote nodes
[34] running TinyOS [31], an open source operating system de-
signed for WSNs. The processor that Mica2 (MPR400CB model)
uses is the AMTEL AVR micro controller — ATmega128L [34].

To compile the code for Mica2, we chose ncc, the NesC com-
piler included in TinyOS release, and avr-gcc, the GNU C com-
piler (GCC) re-targeted for AMTEL AVR micro controllers. We
used -O3 option to compile the code and ensured the code fit in the
sensor storage (i.e. we considered -Os option as well). We used the
default register allocator of the gcc/avr-gcc, for using the new
iterative graph allocator (with the option -fnew-ra) would give
similar results.

We selected Avrora, an instruction-level sensor network sim-
ulator, to collect the execution cycles of the code before and after
compiling the updated code with UCC and GCC (the accuracy of
the simulator has been reported in prior work [32]). We then inte-
grated the energy model and execution profiles to study the energy
consumption tradeoffs with different compilation approaches.

5.2 Code update benchmark
Applications running on remote sensors may be updated for vari-
ous reasons, e.g. bug fixes, code patches, sensor reconfigurations

Benchmark Source Details
Blink TinyOS It starts a 1Hz timer and toggles the red LED

every time it fires.
CntToLeds TinyOS It maintains a counter on a 4Hz timer and

displays the lowest three bits of the counter
value. The red LED is the least significant of
the bits, while the yellow is the most signifi-
cant.

CntToRfm TinyOS It maintains a counter on a 4Hz timer and
sends out the value of the counter in an
IntMsg AM packet on each increment.

CntToLeds
AndRfm

TinyOS It maintains a counter on a 4Hz timer; it com-
bines the tasks performed by CntToRfm and
CntToLeds.

AES Crypto
Lib

It encrypts a given 128 bit input buffer us-
ing AES algorithm. We select the encryption
code in the experiment.

Figure 8. Benchmark programs.

for adapting to changing environments, and change of applications.
A recent study showed that code fixes and sensor reconfigurations
happen more often than changing the application completely be-
cause the latter is much more costly [7].

We categorize different updates into three types according to
their impact on code structures: (a) small changes, which are made
to local basic blocks; (b) medium changes, which include changes
in a large function or across several functions, but still preserve
the overall structure of the original code; (c) large changes, which
significantly change the code structure. Frequent updates such as
code fixes and sensor reconfigurations are mainly small or medium
changes, while replacing the application with a new one introduces
medium to large changes. We show our results for all three types of
changes in this section.

The benchmark programs we used for testing our UCC-RA and
UCC-DA are listed in Figure 8. Those are from the TinyOS release
and the crypto library [6].

5.3 The dissemination cost
Figure 9 summarizes the updates that we made to the benchmarks.
The updates vary from small, through medium, to large changes, as
described below:

• The small and medium test cases cover a wide range of
changes including constant changes, variable changes, param-
eter changes, instruction changes, and control flow changes.
More complex updates may require one or more such changes.



Case
#

Update
Level

Update details

1 Small In CntToLeds: change the color of blink.
2 Small In Blink: insert one local variable and one use in

run next task.
3 Small In AES: insert one local variable and use it within

the loop in aes encrypt.
4 Small In AES: change one instruction in aes encrypt.
5 Small In AES: insert a local variable in aes encrypt and

use it twice — within and outside the loop.
6 Small In Blink: add a new parameter in TOSH run task.
7 Medium In CntToLeds: insert three variables and their uses;
8 Medium In CntToRfm: insert a global variable and use in

three different functions.
9 Medium In CntToRfm: insert a local variable and use it

several times in TOSH run next task function.
10 Medium In Blink: insert a global variable and use it in a new

if/then branch in TOSH run next task function.
11 Medium In Blink: add an else branch for an if statement in

Timer HandleFire.
12 Large Change the application from CntToRfms to Cnt-

ToLedsRfm
13 Large Change the application from CntToLeds to Cnt-

ToRfms.

Figure 9. Experimental update details.

• Complex updates tend to create changes over many functions,
though most of these test cases impact only one function. To
fairly evaluate the UCC-RA and decouple its impact from data
allocation and code layout, we only report the changes in the
functions that are directly affected (rather than, for instance,
code shifting due to expansion/shrinkage of neighbor func-
tions). In addition, we observed minimal inter-procedural cor-
relation. For example, the same global variable can be assigned
with different registers in different functions. Therefore the
overall impact of large updates can be estimated by summa-
rizing the changes in simple updates.

• We evaluate the code changes using Diffinst, the number of
different instructions between the old and the new binaries. We
use Diffinst instead of the edit script size since the latter is
dependent on other factors such as packing or grouping the code
differences in different manners. For example, assume we have
two scripts which contain 10 and 11 edit primitives respectively.
If one transmission packet can pack 10 edit primitives, the script
with 11 primitives needs two packets — a 100% increase from
the one with 10 primitives in terms of the packet number.

We first conducted experiments to compare the dissemination
cost between UCC-RA and GCC-RA. For GCC-RA, we manually
find the best match between the new and the old binaries. This is
the lower bound of existing binary-diff-based code dissemination
algorithms [26, 28]. That is, we compared our results against the
best possible implementation of existing update-unconscious ap-
proaches [26, 28].

Figure 10 shows the results, in Diffinst, for update test cases 1
to 12. As we can see, UCC-RA greatly reduces the code difference
as it effectively localizes the code changes — the majority of the
code can be kept the same. On the contrary, GCC-RA may generate
only local changes (test case 1), but may also propagate local
changes to a much larger range (test case 4).

We then study the two large changes. Test case 12 introduces
several new functions most of which are small inlined functions.
They disturb the register selection in a large function and introduce
significant number of differences, which are seen when using GCC-
RA. Fortunately, those differences are minimized in UCC-RA. Test
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Figure 10. The code dissemination cost.

case 13 represents another type of large changes, the application
CntToLeds is quite different from CntToRfms. The former has
828 instructions while the latter has 4351 instructions. It is an
expensive update since all new instructions and functions have to be
disseminated across the network. There is some code similarity due
to the fact that applications in the same TinyOS environment follow
a generic structure. GCC-RA can reuse 422 instructions and need to
update 3929 instructions. UCC-RA can reuse 63 more instructions,
which represents an increase of 15% from GCC-RA, and accounts
for about 7.6% of the old code (CntToLeds).

5.4 The code quality comparison
Next, we compared the code quality resulting from different algo-
rithms. The code quality is quantified using Diffcycle, the changes
in execution cycles between the old and new version of the binary.
This metric also indicates the slowdown in execution time after ap-
plying update-conscious compilation.
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Figure 11. The performance comparison (single run).

Figure 11 shows the results for test case 1 to 12. In most of these
cases, UCC-RA and GCC-RA have the same Diffcycle, i.e. they
have the same code quality. This is because both of them can find
free registers to use, and no extra spill code need to be generated.
Thus, register conflicts are small. In some cases, e.g., test case 12,
UCC-RA inserts three mov instructions since by doing so, it can
save 406 instruction updates and achieve overall energy efficiency.



The slowdown from applying UCC-RA is negligible in nearly
all cases. For example, the three cycles introduced by UCC-RA in
test case 12 accounts for less than 0.01% of 244K cycles — the
total number of cycles per single run for the application CntToRfm.
We study its energy consumption over a long period after many
invocations, in the next section.

For test case 13, UCC-RA only uses the preferred register tag
as hint when selecting registers. It has the same code quality as the
one generated by GCC-RA.

5.5 The energy consumption
The energy savings per update are calculated as follows. We first
compute Diffenergy (defined below), the energy consumption
difference (per single run) before and after the code update. It
incorporates the energy consumed in both date transmission and
instruction execution. Second, we compute the energy savings per
update for GCC-RA and UCC-RA respectively.

Diffenergy =

(Diffinst × Etrans + Diffcycle × Eexe × Cnt) (18)
EnergySavings =

DiffGCC−RA
energy − DiffUCC−RA

energy (19)

where Cnt is the total number of times that the code may be exe-
cuted before it retires. A code retires when either it is overwritten
by a later update or the sensor node has consumed all its battery
energy and dies.

Figure 12 plots the the energy savings of UCC-RA over GCC-
RA as a function of Cnt, which is projected from the execution
profiles and the code update frequency. Code fragments that reside
in a loop, or retire after a long time, have larger Cnts than others.
From the figure, we can see that when UCC-RA and GCC-RA
generate the same quality code (same Diffcycle, such as for test case
1), the energy savings are independent of Cnt. The savings mainly
come from the reduced transmission energy. The larger number of
instructions we reduce from GCC-RA, the less data we need to
transmit, and the more savings we gain from UCC-RA.

When the code generated from UCC-RA runs slightly slower
than from GCC-RA (e.g., test case 12), extra energy will be con-
sumed in instruction execution. This can diminish the transmission
energy savings when the code is executed very frequently. There-
fore, our UCC-RA adaptively inserts mov instructions according to
execution profiles and update frequency. A large Cnt would dis-
able the insertion such that UCC-RA and GCC-RA have the same
energy consumption in the worst case. For example, UCC-RA falls
back to GCC-RA when test case 12 is executed more than 107 times
because of the diminishing energy gain.

5.6 The problem complexity and compilation time
Since the ILP problem is more complex to solve when the number
of instructions and variables increase, we discuss the problem com-
plexity in this section. Figure 13 plots the number of constraints
as a function of instruction number. We can see that the number
of constraints increases almost linearly with the number of IR in-
structions. We plot the number of iterations that the LP solve [2]
requires as a function of (the number of variables × the number of
IR instructions) in Figure 14.

An interesting observation we found is that the preferred reg-
ister tag helps to improve the performance. Comparing to an ILP-
based register allocator which allocates register from scratch, the
preferred register tag is a hint to the solver and can reduce the num-
ber of iterations that solver needs to try. As an extreme case, we
also tested misleading preferred register tags, e.g., variables are as-
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Figure 12. The energy savings per update with different code
execution frequency.

signed to the preferred register tag randomly, we found the solver
may need 2 or 3 times more iterations to solve.

To see how fast the problem can be solved, we conducted timing
experiments on Intel Xeon 3.6GHz processor running Fedora Linux
2.4.21 kernel. The physical memory size is 2GB while in the
experiments, the largest observed memory usage is less than 256
MB. Figure 15 shows that the average time required to solve one
iteration increase about linearly with the problem complexity. It
usually takes the solver less than 175 seconds to allocate registers
for a chunk of 250 IR instructions. As a comparison, it takes GCC-
RA less than one second to solve the same problem. While UCC-
RA is much slower than GCC-RA, it is not a significant problem
for WSNs due to the following reasons: (i) sensor applications are
small programs limited by the memory size of the sensor node;
(ii) UCC-RA is applied only to the identified changed chunks
instead of the complete functions or the whole application; (iii) it is
worthwhile to trade the compilation time at the server side, where
both energy and computation power are abundant, for the energy
savings on sensor nodes where resources are highly constrained.

We also performed experiments on testing whether approximat-
ing the original non-linear integer programming problem with a
linear problem degraded the final results. We observed the same al-
location decisions for all the test cases with or without the approx-
imation. The only difference is that solving a non-linear problems
is orders of magnitude slower than a linear problem.

5.7 The update-conscious data allocation
Finally, we studied the effectiveness of update-conscious data al-
location. When new global variables are added to a program (test
case D1 Figure 16), the data layout could change greatly. This could
significantly reduce the code similarity in the final binary. For ex-
ample, when we added a global variable in CntToLeds, we ob-
served 517 instruction difference which accounts for about 10% of
the total instructions.

In our second test case D2, we shuffled the global variables in the
code and changed their names. Interestingly, no code change was
observed in GCC-RA unless the variable names were changed. This
is because the data allocation scheme in gcc hashes the variable
into the symbol table using their names. This helps to improve the
compilation speed, but also creates difficulties under the update-
conscious requirement. For example, a newly added variable may
be allocated to the beginning of the data segment, causing many
changes in data layout, even if it is defined at the end of a function.
Similarly, even for functions with few variables, this is difficult to



0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
x 104

Instruction Number

C
on

st
ra

in
t N

um
be

r

Figure 13. The number of constraints as a function of number of
IR instruction.

0 0.5 1 1.5 2 2.5

x 107

0

2000

4000

6000

8000

10000

12000

Number of Variables * Number of Instructions

N
um

be
r o

f I
te

ra
tio

ns

Figure 14. The number of iterations as a function of (the number
of variables × the number of IR instructions).

0 0.5 1 1.5 2 2.5

x 107

0

0.005

0.01

0.015

0.02

0.025

0.03

Number of Variables * Number of Instructions

Ti
m

e 
pe

r I
te

ra
tio

n
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number of variables × the number of IR instructions).

Case # Update details
D1 In CntToRfm: Insert several global variables.
D2 In CntToLEDs: Shuffle the order of variables and change

variable names.

Figure 16. Data layout update details.

attack as the function may be inlined during optimizations. Notice
that a name change of a variable is essentially a deletion of the old
variable plus an insertion of a new variable. This can be handled
naturally by UCC-DA as the new variable always takes the space
of a deleted variable. Therefore, the change of variable names can
be solved easily with UCC-DA to improve the code similarity.

6. Related Research
We have discussed prior research that are closely related to our
work in the introduction section. Here we focus on the previous
work on register allocation in a traditional compilation framework.

In the past twenty years, the register allocation problem has
been extensively studied with great success in many aspects. Tradi-
tional register allocators construct the interference graph of vari-
ables and solve the global register allocation as a graph color-
ing problem [4, 10, 1, 5]. To achieve fast compilation, linear-scan
algorithms assign variables to available registers through a sim-
ple scan of the program, instead of constructing the interference
graph [27, 33]. It was reported that linear-scan allocators gener-
ate similar code as those from graph coloring-based allocators. Re-
cently, the optimal or near optimal register allocation was formu-
lated and solved through integer linear programming [9] or multi-
commodity network flows [15]. In addition to achieving better per-
formance, algorithms have been proposed to achieve many other
objectives. For example, an early work [22] considered the code
size constraint in register allocation, and generated compact code
for embedded systems. Researchers also [36] exploited differential
encoding designs that allow the use of more registers in the pro-
gram.

To save the compilation time after small code changes, Bivens
and Soffa proposed the incremental register allocation (IRA)
scheme [30] which, similar to UCC, only reallocates registers for
the changed code while preserving the assignment for unchanged
code. The difference is, IRA exploits the traditional graph coloring
algorithm for the changed code without considering code similar-
ity and energy consumption model. IRA uses a different criteria to
identify changed code and it neither performs inter-register move-
ment nor gives register selection priority to preferred-registers. The
register assignment generated from IRA is not update-conscious.

7. Conclusions
In this paper, we proposed update-conscious compilation tech-
niques for achieving energy efficiency in wireless sensor networks.
We present algorithms on how to perform update-conscious data
allocation and register allocation. The experimental results showed
great improvements over update-unconscious solutions. In the fu-
ture, we will extend the update-conscious compilation research to
other environments using costly wireless communication, such as
cellular phone users in ad-hoc networks.
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