
Journal of Systems Architecture 51 (2005) 653–664

www.elsevier.com/locate/sysarc
A low energy cache design for multimedia
applications exploiting set access locality

Jun Yang a,*, Jia Yu a, Youtao Zhang b

a Computer Science and Engineering Department, University of California, Riverside, CA 92521, United States
b Computer Science Department, University of Texas at Dallas, Richardson, TX 75083, United States

Received 7 February 2004; received in revised form 24 August 2004; accepted 17 February 2005

Available online 20 April 2005
Abstract

An architectural technique is proposed to reduce power dissipation in conventional caches. Our technique is based

on the observation of cache access locality: current access is likely to touch the same cache set including the tags as the

last access. We show that considerable amount of power driving the cache tag and data banks can be saved if this cache

access locality is fully exploited. This is achieved through buffering and accessing the last accessed cache set instead of

driving the tag and data banks. Unlikely previous designs, our technique does not incur performance degradation.

Experimental results carried out on 8 KB/16 KB/32 KB data and instruction caches have respectively shown 31%/

35%/36% and 51%/58%/66% power savings.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Low power design; Cache; Set buffer; Multimedia
1. Introduction

As the speed gap between the memory and CPU

continues to increase, modern processors tend to

enlarge their on-chip caches in order to reduce

the number of accesses to long latency memories.

For this reason, the on-chip caches have been a
1383-7621/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.sysarc.2005.02.003

* Corresponding author. Tel.: +1 951 827 2558; fax: +1 951

827 4643.

E-mail address: junyang@cs.ucr.edu (J. Yang).
major consumer of total chip power. As an exam-
ple, the Intel Pentium Pro dissipates 33% and the

StrongARM 110 dissipates 42% [15] of its total

power in caches. Consequently, there have been

increasing interests in designing low-power on chip

caches.

A variety of cache designs are being developed

to conserve power [1,18,5,11,6,7]. The first cate-

gory proposed to reduce dynamic switching
energy. Such techniques include filtering mecha-

nisms [11], reconfiguring the cache—including its

size and associativity—according to the needs of
ed.

mailto:junyang@cs.ucr.edu

adpcmenc

adpcmdec
epic

unepic

g721enc

g721dec

jpegenc

jpegdec

mpeg2dec

pegwitenc

pegwitdec

average
0

20

40

60

%
 o

f T
ot

al
 C

ac
he

 A
cc

es
s

1 way
2 way
4 way
8 way
16 way
32 way

Fig. 1. Percentages of accesses that hit in last accessed cache set

(linesize = 32 B).

654 J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664
an application program [1,18], compression

techniques [5], and way prediction [4,17]. Another

category saves static leakage energy. Such tech-

niques include lower Vdd [22], higher threshold

voltages [2], leakage-biased bitlines [7]. Our tech-
nique belongs to the first category—saving dy-

namic power.

The multimedia applications have become an

important workload for general purpose proces-

sors nowadays. Previous research have shown the

importance of designing low-power caches and

memories running multimedia applications [20,9,

14]. In the Cool-Cache architecture developed by
Unsal et al., the compiler helps remap scalars to

smaller scratchpad area and direct accesses to a

tagless cache to achieve energy savings. Moshny-

aga et al. proposed to dynamically adjust memory

bit-width per pixel to reduce video memory power

consumption. Finally, Inoue et al. developed a his-

tory-based tag comparison elimination technique

that reduces the power expenditure in the tag
array.

In [21], we proposed a low complexity design

that can save considerable amount of power by

exploiting the abundant cache access locality for

multimedia applications. We found that multime-

dia applications present high set-wise access local-

ity (SAL)—a set is continuously accessed for a

period of time. Take a direct-mapped cache as an
example, the SAL is reduced to line access locality

where a line is accessed by successive cache acces-

ses. For set-associative caches, a set contains mul-

tiple lines so the SAL is slightly higher than that of

a direct-mapped cache. Fig. 1 shows the set-wise

access locality for a 32 KB data cache with differ-

ent set-associativities running MediaBench bench-

marks [12]. On average, we observed around 37%
of total cache accesses hit in the last accessed set

for associativities ranging from 1 to 32.

With this feature, we proposed the lightweight

set buffer ([21]) for saving power in data caches.

The set buffer stores the last accessed cache set

including tag and data. It is lightweight because

we made use of existing latches inside the cache

with a group of set status bits. When the current
access hits the same set as last access, the driving

of the entire tag and data array is gated off by the

status bits saving significant power. The status bit
simply indicates if a set is last accessed or not. A

zero bit will lead access to the set buffer and

gate off the tag and data array driving. This tech-

nique does not slow down the cache access, nor

does it require excessive amount of extra
hardware.

In this paper, we extend the work in [21]. Com-

pared to [21], we evaluate the power savings of the

design in both data and instruction caches. Our

experimental results show that the design is effec-

tive for both types of caches while with more

power savings for instruction caches. On average,

there are 31%/35%/36% power savings achieved
on 8 KB/16 KB/32 KB set associative data caches

respectively, and 51%/58%/66% power savings for

8 KB/16 KB/32 KB instruction caches respec-

tively. Furthermore, we also evaluate the design

on a subset of SPEC benchmark programs to see

its general applicability to non-multimedia appli-

cations. The results show that due to less set-wise

access locality in these programs, there are compa-
rable power savings in the instruction cache but

not the data cache. We observe that on average,

19%/25% power savings are achieved on 8 KB/

32 KB data caches respectively.

The rest of the paper is organized as follows.

Section 2 reviews previous research in line buffer-

ing. In Section 3, detailed design of the proposed

set buffer is illustrated. Section 4 gives the energy
model of our design. The experimental results are

J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664 655
presented in Section 5. Finally, Section 6 concludes

this paper.
2. Related research

The notion of line buffer has previously ap-

peared in literature [19,6]. Su and Despain pro-

posed in-cache two-level hierarchies in which a

single line buffer, serving as the first level ‘‘cache’’,

is accessed before the main cache [19]. This design

is essentially a single-entry filter cache [11] within

the original cache. Consequently, a line buffer miss
requires additional cycles to access the main cache,

degrading the overall program performance.

Moreover, the overall energy consumption may in-

crease if the line buffer miss rate is high. To over-

come those defects, Ghose and Kamble [6]

introduced a concurrent version of line buffers in

which cache lines in the same set are organized

in one wider line buffer (WLB), and they keep multi-
ple such buffers. Buffering multiple WLB aims at

improving WLB hit rate and concurrent accessing

with the main cache does not impact performance.

The proposed WLB is effectively a fully-associative

cache placed on the side of the level one data

cache. Both caches are inquired simultaneously,

and a hit in WLB cancels the on-going access in

the main cache assuming that the former is re-
solved earlier. The major overhead of this design

come from (1) the power dissipated in the (fully-

associative) WLB on buffer misses, including miss

detection and the line replacement, (2) the power

spent in initial main cache driving on WLB hits,

and (3) the comparisons of both set_index and

tag in WLB on each potential hit.

The deficiency in both of the above techniques
lies in the possibility of increasing total power

when the line buffer or WLB hit ratio is low. This

calls for an ultra low-overhead buffering technique

that reduces power consumption when the hit ratio

is high, and barely increases power when the hit

ratio is very low. Our proposed lightweight set

buffer design fits into this category. We attach an

extra single bit to each cache set to indicate
whether or not this set is last accessed. Using this

bit, we perform a concurrent gated probing to

the cache and set buffer—the bit automatically
chooses the access between the main cache and

the set buffer. This implies that in the worst case,

the bit guides every access to the main cache and

we pay only the power maintaining each bit, which

turns out to be almost negligible. As we will ex-
plain in Section 3, this design does not incur per-

formance degradation either.
3. The lightweight set buffer

For a cache access in a conventional m-way set-

associative cache, the set_index portion of the ad-
dress is first extracted to index m tag and the data

arrays. Next, the m tags and cache lines are read

out and steered into m local buffers waiting for

tag-compare results. If it is a cache hit, the target

word will be selected out from one of m data line

buffers and returned to the CPU. Notice that if

the next cache access hits in the same set, the entire

procedure repeats and the same cache set is driven
into the tag and line buffers again. The develop-

ment of lightweight set buffer stems from this

observation and incorporates minimum amount

of hardware to remove unnecessary activities.

Our set buffer is merely the collection of those al-

ready existing buffers for holding tags and cache

lines.

3.1. Proposed architecture

3.1.1. The LAB Logic

Fig. 2 depicts the logic design of the lightweight

set buffers to a 4-way set associative cache. To be

clear, we omit the decoder logic, tag compare

and select, and data output driving logic since they

comply with standard implementations. The
shaded boxes in the graph represent multiple cache

ways and we focus our description on only a single

way since the rest are repetitive. All the newly

added lines, gates and bit arrays are highlighted

in bold lines.

An additional bit—latest accessed bit (LAB) is

added to each set to indicate whether the set is lat-

est accessed or not. The LAB is implemented as a
toggle flip-flop. Each LAB bit stores either a ‘‘0’’

or a ‘‘1’’ representing last-accessed-true or -false.

The use of LAB is combined with a wordline

tag set_index offset

TAG DATA

LAB

Address

Line BufferTAG buffer

0

LAB: Latest Accessed Bit

1

1

Fig. 2. Logic design of lightweight set buffer utilizing a set status bit.

Fig. 3. Circuit changes to wordline drivers.

656 J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664
driving of both tag and data arrays. If the LAB is

unset, meaning that it was accessed last time, the

corresponding cache set should already have been
steered into the set buffer. Therefore, the wordline

driving is gated off as shown in dashed lines in

Fig. 2. Meanwhile, the set buffer is driven to get

ready for tag comparison and data access, as

shown in solid lines in the graph.

On the other hand, by the time a LAB deter-

mines driving the set buffer, the cache bitlines

may have been precharged already. Since the en-
tire data arrays and tag arrays are not activated,

the discharging can be avoided for this access.

Thus, the next cache access does not need to pre-

charge bitlines again. If the next access goes to

the cache arrays, the bitlines are already charged

in the current access. If the next access goes to

the set buffer, the cache array bitlines remains

charged. In other words, the current hit in the set
buffer saves bitline precharge power for the next

and future accesses.

Another issue is that the data buffered in the

sense amplifiers may also be destroyed by pre-

charging. To preserve the stored data, this pre-

charging should be disabled if the LAB

corresponding to the current set is ‘‘0’’, i.e. current

set is the same as the last set, and enabled when the
bit is ‘‘1’’. In other words, precharging the sense

amplifiers depends on one of the LABs that is
known only after decoding the index. From run-

ning CACTI [10], we found that the precharging

time of sense amplifiers is short enough to get them
ready for storing the new data line, even after

decoding. Thus, through selective precharging,

the sense amplifiers can lock the data line when

they are repeatedly accessed.

Fig. 2 shows only the logic design of the LAB

controlling tag and data arrays. In reality, the

AND gate can be combined with the wordline

driving circuit. For example, Fig. 3 illustrates what
can be modified on the path from the decoder to

wordline driving. The upper portion is an example

of the gates between the end of the decoder, an

NOR gate, to the beginning of a wordline, an in-

verter serving as a wordline driver [10]. To incor-

porate the LAB signal, one solution is to replace

Fig. 4. Power consumed by updating the LABs including

decoding the old set_index and storing set_index in buffers (in

percentage of original cache).

J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664 657
two inverters with an AND gate. The AND gate

now serves as the wordline driver and should be

sized according to the wordline length to meet

the target rise time. As we can see, when the

LAB signal is low, the AND gate will not conduct
and the tag and wordlines will not be driven. the

modifications required in the cache control circuits

is minimal.

3.1.2. Only one LAB can store ‘‘0’’

Since the LAB is used to indicate if it is the last

set accessed, at anytime, there can be one and only

one LAB that is storing ‘‘0’’, all the remaining
LABs are storing ‘‘1’’.

To ensure the above property, one must restore

(set to ‘‘1’’) the bits that were zeroed before the last

access. This is achieved by remembering the set_in-

dex portion of the last but one address. If the last

access hit an LAB that is ‘‘0’’, no action needs to

be taken since the cache set is already marked

and should stay marked for the next time. If it is
‘‘1’’, use the stored set_index to restore its corre-

sponding LAB and zero the current LAB using

the current set_index. On a cache miss, all the

LABs should be re-initialized to ‘‘1’’ (there is only

one LAB needs to be restored) and we do not at-

tempt to reflect the cache line fill in the set buffer.

The register to store the old set_index is initialized

to zero, i.e. it points to the first set. Since the set is
invalid when the execution starts, the invalid bit

prevents the possible misuse of old set_index for

the first iteration.

3.1.3. Power overhead

The LABs and the necessary additional register

for set_index bring only marginal extra power. A

flip-flop consumes less than 10 fJ (10 · 10�15 J)
on every flipping [13]. Incorporating this figure,

we used the power and timing evaluation tool

XCACTI [8] with 0.18 lm technology. We mea-

sure the additional power dissipation due to

LAB and other necessary hardware on updates.

A LAB update happens when a currently accessed

cache set is different than the last one. In this case,

both LABs are flipped on the update. Moreover,
an additional decoding for saving and comparing

the set index of the old LAB. Taking all the above

into account, Fig. 4 tabulates a LAB update power
in percentage of the original cache power. Most of

the numbers are around or well below 2%. And

configurations with more bits in set_index tend

to have higher percentage of LAB power. Also
note that LAB update happens only when it is

‘‘1’’ and on cache misses. Therefore, the accumula-

tive power overhead due to LAB updates has less

impact on power savings than the data shown

here. We will present the overall power savings

in Section 5.

3.1.4. Timing the access

The LAB update operation should be done in a

timely manner. This is important since the next

cache access may come right next clock cycle,

which means the LAB should get ready for the

new request by then. This can be ensured by

updating the LAB as soon as ‘‘1’’ is detected since

from this point on the cache behaves normally.

Thus, updating LAB is carried in parallel with
tag and data array driving and can be finished be-

fore the current cache access is over. On a cache

miss, however, the miss detection will not reveal

until near the end of the access, therefore updating

the LAB can only be done after the current access.

However, this will not impact the performance

since the next cache access will not benefit from

the current miss anyway (we do not attempt to re-
flect the cache refill in the set buffer). Therefore,

our solution is that on every cache access that fol-

lows a miss, the LAB is used solely for updating.

The LAB does not introduce delay on the tag

path which sometimes can be the critical path in

a cache access. The tag path consists of decoding

Fig. 5. Additional power consumed by write delay buffers (in

permillage of original cache).

658 J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664
the set_index, reading the tag arrays, compare the

tags and drive the output data. From Fig. 2, the

only gate ‘‘added’’ to the tag path is the AND

gate. However, as illustrated in Fig. 3, such an

AND gate is fused into the original tag path.
The internal transistors can be resized without

additional delay. At the same time, The LAB sig-

nal is available continually from the flip-flop out-

put. Therefore, the tag and data array wordline

driving can start as soon as the decoding signal

is steady from the decoder output. From the above

analysis, we can see that the modification to the

tag path does not impact on its delay, and hence
the cache access time (max(data path, tag path)).

3.2. Managing write operations

The write operations need to proceed with care.

This is because a line buffer becomes dirty on a

write hit. The updates in the line buffer will be

present in the data array sooner or later. There
are two approaches to the timing of the updates:

• Write-through: Every write hit in line buffer is

also written in data array.

• Write-back: Only when a new line (including a

different line in the same set or a different set)

is inquired, does the dirty line buffer update

the data array.

There are obvious tradeoffs between the two de-

signs. The write-through version has no impact on

performance but does not benefit as much as the

write-back version. The latter saves power in a

more aggressive way since multiple writes can be

coalesced in a single write back, but may suffer

from performance loss. This is because a new ac-
cess may need to wait until the write-back finishes.

This can be overcome through adopting the pipe-

lined writes mechanism used by Alpha AXP

21064 and other machines [16]. On such pipelined

writing, a line buffer first copies the line into a

write delay buffer and the actual write-back takes

place when next time a new write operation is com-

paring its tag. In other words, on every write ac-
cess, the cache always perform tag compare for

current request but writes data from the write de-

lay buffer. Therefore, this approach does not intro-
duce extra cycles on cache accesses. The only

overhead in this approach is the extra write delay
buffer. Note that on every read access, this write

delay buffer needs to be inquired. To see the power

budget of the delay buffer, we measured it using

XCACTI tool for various cache configurations.

Fig. 5 shows the results in permillage of a normal

cache. For all the configurations we tested, the ex-

tra power is within two permillage of the original

cache. Thus, having the write delay buffers will
help reduce the overall power consumption. In

Section 5, we will adopt this approach and present

the measurements.
4. Energy modeling

In this section, we describe how the power is
modeled for our lightweight set buffer design. We

categorize different cache operations in Fig. 6. As

we can see, beyond normal cache read/write hits,

we need to further distinguish between: (1) hits

and misses in a set buffer, and (2) accesses follow-

ing or not following a cache miss as they consume

different amount of energy, especially in using

LAB as described in Section 3.1. We list the energy
equations in each category in form of amount

being added and subtracted, using ‘‘+’’ and ‘‘�’’

respectively, along with standard cache energy

consumptions. The baseline energy includes writ-

ing from the write delay buffer as described in Sec-

tion 3.2. Essentially, we save energy when it is a

LAB hit, and need to charge the LAB update en-

ergy for updating LABs otherwise.

Fig. 6. Power consumption components.

J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664 659
5. Experimental results

We implemented our proposed lightweight set

buffer technique in an execution driven simulation

tool SimpleScalar [3] with cache power model

extension XCACTI [8]. We evaluated our design

through running a subset of MediaBench bench-

mark [12] suite (currently there are 11 programs

that are running correctly in our system), then

we used XCACTI to calculate the energy saving
on both L1 data and instruction cache. Without

loss of generality, we varied the cache size and

set-associativity to cover a range of realistic cache

configurations. In order to show the advantage of

our design, we also compare the energy saving

with the WLB approach.
adpcmenc

adpcmdec
epic

unepic

g721enc

g721dec

j

–20

–10

0

10

20

30

40

50

60

%
 o

f P
ow

er
 R

ed
ut

io
n

Fig. 7. Overall power reducti
5.1. Energy saving in data caches

In this set of experiments, we used the following

cache parameters for L1 data cache: 8 KB direct-

mapped, 16 KB 2-way set-associative, and 32 KB

4-way set-associative, all with 32 B line size. Our

purpose is to compare with the WLB design [6]

and see if our lightweight set buffer is more

efficient.

Our first set of experiments measures the power
reduction percentage for both designs. The results

are shown in Fig. 7 for three cache configurations.

For all the configurations we tested, our light-

weight set buffer outperforms the WLB except epic.

Epic has very low set-wise access locality (Fig. 1),

so buffering 1 set is not enough to save much
pegenc

jpegdec

mpeg2dec

pegwitenc

pegwitdec

average

8K Lightweight Set Buffer
8K Wider Line Buffer
16K Lightweight Set Buffer
16K Wider Line Buffer
32K Lightweight Set Buffer
32K Wider Line Buffer

on compared with WLB.

660 J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664
power. WLB buffered more data, which poten-

tially improves hit rate and hence saves more

power for epic benchmark. On average, we achieve

31%/35%/36% power savings for 8 KB/16 KB/

32 KB cache respectively. We observed that with
about the same amount of set buffer hit ratio

(Fig. 1), highly associative caches tend to benefit

more since their total number of sense amplifiers

used in the data arrays is higher. The sense ampli-

fiers in the caches usually consume the bulk of

overall power [8]. Reducing the tag and data array

activity directly translates to reducing sense ampli-

fier power. Therefore, the set buffer are more effec-
tive for highly associative caches.

The WLB design works well for medium or large

cache sizes as we can see from the figure. For small
adpcmenc

adpcmdec
epic

unepic

g721enc

g721dec

jp

0

10

20

30

40

50

60

70

%
 o

f P
ow

er
 R

ed
ut

io
n

Fig. 8. Tag and data arrays� contr

adpcmenc

adpcmdec
epic

unepic

g721enc

g721dec

jp

–10

–8

–6

–4

–2

0

2

4

%
 o

f P
ow

er
 R

ed
ut

io
n

8K Lightweight
8K Wider Line B
16K Lightweight
16K Wider Line
32K Lightweight
32K Wider Line

Fig. 9. Power variations when set
direct-mapped cache, it increases the overall power

because it is not worth complicating the logic and

controls in small simple structured caches. The

WLB in these caches is simply an overkill. On aver-

age, the WLB design reduces 14% and 13% for
16 KB and 32 KB cache respectively, but increases

the 8 KB cache power consumption by 4.9%.

From our experiments, the WLB hit ratio is about

twice as much as our set buffer. However, the

power savings is lower than our design because

of the over complex design. We attribute this re-

sults to the ‘‘simpler is better’’ rule.

Fig. 8 further shows the contribution of data
and tag array in the energy reduction separately.

The data array alone saves on average 23%/26%/

29% for caches of three sizes. The tag arrays ac-
egenc

jpegdec

mpeg2dec

pegwitenc

pegwitdec

average

8K Lightweight Set Buffer
8K Wider Line Buffer
16K Lightweight Set Buffer
16K Wider Line Buffer
32K Lightweight Set Buffer
32K Wider Line Buffer

ibution to power reduction.

egenc

jpegdec

mpeg2dec

pegwitenc

pegwitdec

average

Set Buffer
uffer

 Set Buffer
Buffer
 Set Buffer
Buffer

buffer/WLB hit ratio is low.

adpcmenc

adpcmdec
epic

unepic

g721enc

g721dec

jpegenc

jpegdec

mpeg2dec

pegwitenc

pegwitdec

average
0

10

20

30

40

50

60

70

80

%
 o

f P
ow

er
 R

ed
ut

io
n

8K 1way Lightweight Set Buffer
8K 1way Wider Line Buffer
16K 2way Lightweight Set Buffer
16K 2way Wider Line Buffer
32K 32way Lightweight Set Buffer
32K 32way Wider Line Buffer
64K 2way Lightweight Set Buffer
64K 2way Wider Line Buffer

Fig. 10. Power reduction for instruction caches.

adpcmenc

adpcmdec
epic

unepic

g721enc

g721dec

jpegenc

jpegdec

mpeg2dec

pegwitenc

pegwitdec

average
0

20

40

60

%
 o

f T
ot

al
 C

ac
he

 A
cc

es
s

16 Byte
32 Byte
64 Byte

Fig. 11. Effect of line size on set-wise access locality (32 KB, 4-

way set-associative).

J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664 661
count for 4% to 7% additional power savings. This

amount is proportional to the power consumed by
the tag arrays in the entire data cache, which we

estimated is about 6%.

Our lightweight set buffer design has another

valuable feature in that it does not increase the

overall power consumption even when the set buf-

fer hit ratio is very low. However, the WLB is not as

fortunate. To verify this observation, we per-

formed another set of experiments in which we
intentionally preset the set buffer and WLB hit ratio

a low number, e.g. 3% of total cache accesses in

which 1% are write hits. The results are shown in

Fig. 9. Not to our surprise, the WLB data for almost

all the benchmarks are negative. While in our de-

sign, we keep a minor but steady power saving per-

centages, 1.8%, 1.1%, and 0.6% for 8 KB, 16 KB,

and 32 KB respectively. The LAB overhead as
shown in Fig. 4 is so low that its effect is not even

noticeable across different benchmarks.

We believe the above feature is very appealing

since this results a safe low power cache design.

In such a scenario, the cache saves significant

amount of power while the program presents high

set-wise access locality. On the other hand, the

cache can seamlessly turn to a ‘‘power safe mode’’
where even low set-wise access locality can yield

some amount of savings.
5.2. Energy saving in instruction cache

For instruction caches, it is also feasible to

adopt our design since the instructions present

very good set-wise access locality. We expect to

save more power in instruction caches than data

caches using our design.

In this set of experiments, we take instruction

cache configurations that are adopted by existing

processors: 8 KB direct-mapped (Alpha 21164),

164.gzip

176.gcc

256.bzip

300.tw
olf

–10

0

10

20

30

40

50

60

70

80

%
 o

f P
ow

er
 R

ed
ut

io
n

Dcache 8K 1way Lightweight Set Buffer
Dcache 8K 1way Wider Line Buffer
Dcache 32K 4way Lightweight Set Buffer
Dcache 32K 4way Wider Line Buffer
Icache 8K 1way Lightweight Set Buffer
Icache 8K 1way Wider Line Buffer
Icache 32K 4way Lightweight Set Buffer
Icache 32K 4way Wider Line Buffer

Fig. 12. Effectiveness on SPEC benchmarks (32 KB, 4-way set-associative).

662 J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664
16 KB 2-way set-associative (IBM PowerPC 405),

32 KB 32-way set-associative (Intel XScale), and
64 KB 2-way set-associative (AMD Athlon). The

results are shown in Fig. 10. On average, we

achieve 51%/58%/66%/60% power savings for

8 KB/16 KB/32 KB/64 KB caches respectively.

The primary reason for this significant saving is

the high hit ratio in the set buffer (around 60%

for all the benchmarks) which is a nature feature

of instruction cache accesses.
It is worth noting that the energy saving in I-

cache is not only affected by cache size, but also

set-associativity. In Fig. 10, we observed that

32 KB 32-way cache saves the most power, while

16 KB and 64 KB 2-way cache stand at the second

tier, finally the 8 KB 1-way cache. This is because

when the cache set associativity is increased, the

number of lines contained in a set is increased
and thus the set-wise access locality. This shows

our design is an effective alternative among various

low-power techniques for high associativity caches.

5.3. Impact of line sizes

The set-wise access locality is a function of not

only the cache set associativity, but also the cache
line sizes. Fig. 11 plots this metric with different

line sizes for 32 KB, 4-way set-associative caches.
We can see that for most programs tested, the last

cache set hit rate increases with line size. This is
intuitive since larger line sizes increase set-wise ac-

cess locality. However, we did not choose large line

sizes since the cache may be ill-configured which

might increase cache miss ratio.

5.4. General purpose benchmarks

We further evaluated the design for general pur-
pose benchmark programs. We chose four SPE-

CInt 2000 benchmark programs and collected the

power saving results for both data and instruction

caches (Fig. 12). As expected general purpose pro-

grams have less set-wise access locality which re-

sults in less overall power savings. As an

example, for a data cache with 32 KB and 4-way

set associativity, we achieved around 25% power
savings for these programs while on average 36%

for multimedia programs.
6. Conclusion

In this paper, we designed a lightweight set buf-

fer in data cache and instruction cache to achieve
favorable power savings without performance deg-

radation. The proposed technique works well for

J. Yang et al. / Journal of Systems Architecture 51 (2005) 653–664 663
multimedia applications that have high set-wise

access locality. Compared to previous approaches,

our technique requires much less hardware over-

head yet still yields better results. Moreover, the

lightweight set buffer does not over-spend power
even when the set-wise access locality is low. This

is a accomplishment that could not be achieved

previously.
References

[1] D.H. Albonesi, Selective cache ways: on-demand cache

resource allocation, Journal of Instruction-Level Parallel-

ism 2 (2000).

[2] M. Allarm, M.H. Anis, M.I. Elmasry, High-speed dynamic

logic styles for scaled-down CMOS and MTCMOS Tech-

nologies, in: ACM/IEEE International Symposium on Low

Power Electronics and Design, 2000, pp. 155–160.

[3] D. Burger, T. Austin, The SimpleScalar Tool Set, Version

2.0, Technical Report 1342, University of Wisconsin-

Madison, Computer Science Department, 1997.

[4] B. Calder, D. Grunwald, J. Emer, Predictive sequential

associative cache, in: The 2nd IEEE Symposium on High-

Performance Computer Architecture, 1996, pp. 244–253.

[5] R. Canal, A. Gonzalez, J.E. Smith, Very low power

pipelines using significance compression, in: The 33rd

Annual IEEE/ACM International Symposium on Micro-

architecture, 2000, pp. 181–190.

[6] K. Ghose, M.B. Kamble, Reducing power in superscalar

processor caches using subbanking, multiple line buffers

and bit-line segmentation, in: ACM/IEEE International

Symposium on Low Power Electronics and Design, 1999,

pp. 70–75.

[7] S. Heo, K. Barr, M. Hampton, K. Asanovic, Dynamic fine-

grain leakage reduction using leakage-biased bitlines, in:

The 29th Annual International Symposium for Computer

Architecture, 2002, pp. 137–147.

[8] M. Huang, J. Renau, S.M. Yoo, J. Torrellas, L1 Data

cache decomposition for energy efficiency, in: ACM/IEEE

International Symposium on Low Power Electronics and

Design, 2001, pp. 10–15.

[9] K. Inoue, V.G. Moshnyaga, K. Murakami, A history-

based I-cache for low-energy multimedia applications, in:

ACM/IEEE International Symposium on Low Power

Electronics and Design, 2002, pp. 148–153.

[10] N.P. Jouppi, S.J.E. Wilton, An enhanced access and cycle

time model for on-chip caches, Research Report 93/5,

Compact Western Research Lab, July 1994.

[11] J. Kin, M. Gupta, W.H. Mangione-Smith, The filter cache:

an energy efficient memory structure, in: ACM/IEEE 30th

International Symposium on Microarchitecture, 1997, pp.

184–193.

[12] C. Lee, M. Potkonjak, W.H. Mangione-Smith, Media-

Bench: a tool for evaluating and synthesizing multimedia
and communications, in: ACM/IEEE 30th International

Symposium on Microarchitecture, 1997, pp. 330–335.

[13] R.P. Llopis, M. Sachdev, Low power, testable dual edge

triggered flip-flops, in: ACM/IEEE International Sympo-

sium on Low Power Electronics and Design, 1996, pp. 341–

345.

[14] V.G. Moshnyaga, K. Inoue, M. Fukagawa, Reducing

energy consumption of video memory by bit-width com-

pression, in: ACM/IEEE International Symposium on Low

Power Electronics and Design, 2002, pp. 142–147.

[15] J. Montenaro et al., A 160 MHz 32 b 0.5 W CMOS RISC

Microprocessor, in: International Solid-State Circuits

Conference, 1996.

[16] D. Patterson, J. Hennessy, Computer Architecture: a

Quantitative Approach, Second ed., Morgan Kaufmann

Publishers, 1996.

[17] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, K.

Roy, Reducing set-associative cache energy via way-

prediction and selective direct-mapping, in: ACM/IEEE

34th International Symposium on Microarchitecture, 2001,

pp. 54–65.

[18] P. Ranganathan, S. Adve, N. Jouppi, Reconfigurable

caches and their application to media processing, in: 27th

Annual International Symposium on Computer Architec-

ture, 2000, pp. 214–224.

[19] C. Su, A. Despain, Cache design tradeoffs for power and

performance optimization: a case study, in: ACM/IEEE

International Symposium on Low Power Electronics and

Design, 1995, pp. 63–68.

[20] O.S. Unsal, R. Ashok, I. Koren, C.M. Krishna, C.A.

Moritz, Cool-cache for hot multimedia, in: ACM/IEEE

34th International Symposium on Microarchitecture, 2001,

pp. 274–283.

[21] J. Yang, J. Yu, Y. Zhang, Lightweight set buffer: low

power data cache for multimedia applications, in: ACM/

IEEE International Symposium on Low Power Electronics

and Design, Seoul, Korea, August 2003, pp. 270–273.

[22] K. Usami et al., Automated low-power technique exploit-

ing multiple supply voltages applied to a media processor,

IEEE Journal of Solid-State Circuits 33 (3) (1998)

463–471.

Jun Yang received the BS degree in

computer science from Nanjing Uni-

versity, China, in 1995, the MA

degree in mathematical sciences from

Worcester Polytechnic Institute, MA,

in 1997, the PhD degree in computer

science in the University of Arizona in

2002. She is an assistant professor of

the computer science and engineering

in the University of California at Riv-

erside. Her research interests are in the

areas of secure program execution, temperature-aware mic-
roarchitecture designs, and network processor designs. She is a

member of ACM and IEEE.

ems Architecture 51 (2005) 653–664
Jia Yu is a PhD candidate in the

Department of Computer Science and

Engineering at University of Califor-

nia, Riverside. Her research interests

include low-power microprocessor

architecture, network processor archi-

tecture, and design automation. She

received her Master�s degree from Sin-

gapore-MIT Alliance in 2002, and a

Bachelor�s degree from the Zhejiang

University, China in 2000.

664 J. Yang et al. / Journal of Syst
Youtao Zhang received the PhD degree

in computer science in the University

of Arizona in 2002. He is an assistant

professor of the computer science at

the University of Texas at Dallas. His

research interests are in the areas of

computer architecture, program pro-

filing, program analysis and optimiza-

tion, and data compression. He is the

recipient of US NSF Career Award in

2005, the distinguished paper award of

the IEEE/ACM International Conference on Software Engi-
neering (ICSE) conference in 2003, the most original paper

award of the International Conference on Parallel Processing

(ICPP) conference in 2003. He is a member of the ACM and the

IEEE.

	A low energy cache design for multimedia applications exploiting set access locality
	Introduction
	Related research
	The lightweight set buffer
	Proposed architecture
	The LAB Logic
	Only one LAB can store ldquo 0 rdquo
	Power overhead
	Timing the access

	Managing write operations

	Energy modeling
	Experimental results
	Energy saving in data caches
	Energy saving in instruction cache
	Impact of line sizes
	General purpose benchmarks

	Conclusion
	References

