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Abstract

On-chip caches take a large portion of the chip area.
They are much more vulnerable to parameter variation than
smaller units. As leakage current becomes a significant com-
ponent of the total power consumption, the leakage current
variations induced thermal and reliability problem to the on-
chip caches become an important design concern.

This paper studies the impact of process variations, par-
ticular the leakage variations, on the temperature and reli-
ability of on-chip caches. Our statistical simulation shows
that, under process variation, 85% of the caches see short-
ened lifetime, with average lifetime being 81.6% of the ideal
cache. At runtime, unevenly distributed dynamic power and
the corresponding thermal variation would further deterio-
rate the situation. To mitigate this problem, we propose a
dynamic cache subarray permutation scheme that can alle-
viate the thermal stress on a high-leakage area to improve the
reliability of the caches. Experiments on 17 Spec2k bench-
marks show that our scheme can extend the cache lifetime by
up to 20.3%, and reduce the peak temperature by 7 degrees
on average and more on data-intensive applications.

1 Introduction

As technology scaling approaches to the nanometer scale,
high performance microprocessor designers are facing two
major challenges. The first is the increasing variations dueto
manufacture processes and runtime variability. One impor-
tant problem associated with variations is the potential yield
loss and reduced lifetime and reliability. The second chal-
lenge is the increasing power density partially due to large
leakage power [12]. The variation in fabrication process di-
rectly affects device parameters such as transistor channel
length and gate oxide thickness [7]. These will change the
circuit behavior which ultimately affects its power and per-
formance, and increases the probability of failures [18]. In
addition to this one-time variation due to fabrication, there
are runtime variations, such as distributed runtime tempera-
tures, device ware out, and voltage drop variation in power
supply networks. As a result, design processes must consider
the variations to make robust and reliable chips.

Modern on-chip caches in today’s microprocessor occupy
a significant portion of the total chip area. As a result, it is
particularly vulnerable and exposed to significant amountsof
variations [17]. Recent industry studies show that the differ-
ence in total leakage power from die to die on the same wafer
can be as large as 20X [7]. Likewise, the leakage current
within a die also varies greatly even for schematically equiv-
alent devices like memory cells. Highly leaked devices con-
sume more power which increases temperature faster than
normal devices due to the exponential relation between leak-
age power and temperature.

High temperature leads to shorter lifetime, as most hard-
ware failure mechanics are exponentially related to temper-
ature [4]. Recent study shows, multi-ported data caches in
superscalar microprocessors are very often exposed to high-
temperature[15]. To extend the lifetime of a cache, the run-
time temperature should be reduced, especially the peak tem-
perature. Conventionally, redundant rows/columns of cache
cells were used to replace the faulty rows/columns [11].
However, they are not run-time techniques, and are used dur-
ing testing [24] before shipping the chips. It was suggested
that redundancy could be exploited to increase processor life-
time, but at a cost of runtime performance [2]. In this paper,
we assume a whole cache becomes faulty if one cache block
is faulty.

Recently, there have been a number of techniques pro-
posed to reduce the temperatures and the leakage power of
on-chip caches. The main idea is to distribute the power
evenly in a cache to reduce its power density. For example,
cache blocks are permuted such that the spatial locality does
not result in high access rate in one cache subarray [16, 13].
Another solution is to create interweaved hot and cool cache
blocks by disabling idle blocks [16]. However, none of the
proposed techniques considers the impact of process varia-
tion. Since different cache blocks have intrinsic differences
in their leakage current, and at runtime they may be stressed
differently by different workloads, they should no longer be
treated as the same. Instead, an adaptive strategy to runtime
temperature change should be adopted, taking into account
the fabrication variation factor.

In this paper, we examine the cache thermal and reliability
issues considering process variation, especially the leakage



induced variations. The main contributions are as follows:

• We develop an architecture level method for evaluating
power, thermal and reliability of caches in the presence
of process variation. Particularly, the leakage power
model, which consists of sub-threshold and gate leak-
age, includes parameters for both device gate length and
temperature. This is in contrast to the gate-length-only
model in [17].

• We perform statistical Monte Carlo simulation on
10,000 samples of the cache, to study the effect of pro-
cess variation and show that 85% of the caches have
shortened lifetime with average lifetime being 81.6% of
an ideal cache.

• We develop adynamic(runtime) cache block permuta-
tion scheme, in contrast to astatic scheme [16] where
permutation is done in one time.

• We extend the average MTTF of a cache by up to
20.3%, reduce its total leakage power and peak temper-
ature by 7 degrees on average.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the models. Section 3 analyzes the perfor-
mance of cache under parameter variations. Section 4 de-
scribes our cache design. Section 5 and 6 present our exper-
iment framework and results. Finally, Section 7 concludes
this paper.

2 Process variation and cache reliability mod-
eling

To evaluate the cache reliability under process variation,
we developed an architectural level methodology with a
number of models. The detailed approach, depicted in Fig.1,
is comprised of three main steps: power, temperature and re-
liability. The power model is comprised of two components,
dynamic power and leakage power. Leakage power depends
on both temperature and gate length. We adopted a widely
used hierarchical spatial correlated model to generate gate
length variation over the whole cache. Then based on power
consumption, temperature is simulated over reasonable time
intervals by using a fast simulation method. At last, having
a temperature trace of entire simulation, cache reliability of
each workload can be calculated as an average over time and
space.
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Fig. 1: The complete system of models used in this work.

In the following, we give detailed descriptions for each
model.

2.1 Power model

A cache circuit model is built in PTM (predictive technol-
ogy model) 45nm technology [19], and simulated in HSpice.

It gives dynamic and leakage power of an ideal cache with
uniform SRAM cells and gate length. We also generate a
leakage power model based on one standard 6T-cell, with
two parameters: temperature and gate length.

Generally, power dissipation can be divided into two
parts: dynamic power and leakage power.

Dynamic power, also called switching power, is con-
sumed whenever cache is accessed. As components change
their states, corresponding load capacitances will be charged
or discharged. So Pdynamicis proportional to cache access fre-
quency, which can be logged during architectural simulation.
Notice that dynamic power is temperature-independent as
capacitances are constant under various temperatures. And
we also neglect the process variation in load capacitances.
Therefore the dynamic per access power can be treated as a
constant.

Leakage Power, as technology scales down, becomes
more and more dominant in total power dissipation.

Among various components in cache, cell array consumes
the bulk of power and occupies most of the cache area, so we
focus our leakage study on the cache cells. The total leakage
is proportional to the number of cells, as estimated in Eq.1:

Ptotal = Ncell ×Vdd× Ileak 6Tcell (1)

= Ncell ×Vdd× (Igate leakage+ Isubthresholdleakage)

Fig.2 shows a 6-T SRAM cell with one read-write port.
The bit value is stored and reinforced by the two cross-
coupled inverters. In Fig. 2, we show all leakage paths for
this cell when storing a ’1’. The structure is symmetric, so
the leakage for storing ’0’ is the same.
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Fig. 2: Leakage paths for a 6-T SRAM cell.

The leakage power model for each cell is obtained as fol-
lows. We did multiple simulations, with temperature ranging
from 30◦C to 120◦C, and step size is 10◦C. Under each tem-
perature, the gate length varies from 90% to 110% of the
normal value. The results are shown in Fig. 3. All values
are normalized to the subthreshold leakage power of a regu-
lar sized cell at 40◦C. In this figure, there are two groups of
lines, the lower group is for gate leakage, which is relatively
constant under different configurations. The reason is that
the oxide thickness is the only parameter that significantly
impact the gate leakage [8]. The upper group is the sub-
threshold leakage. This group clearly shows the exponential
growth of leakage with temperature. The 11 lines correspond
to 11 different gate lengths. The smaller the gate length, the
higher the leakage power. According to [10], the subthresh-
old leakage can be expressed as :

Ileakage= A(l)×T2
×e−B(l)/T (2)



A and B used to be constants as modeled in [10], How-
ever, as the gate length varies, the leakage current curves
start to diverge. We can use a 2nd order polynomial func-
tion of length to represent this behavior:

A(l) = p2× l2 + p1× l + p0 (3)

andB(l) is modeled similarly. Finally, we derived all co-
efficients of thel terms by fitting the curves with the calcu-
lated values. The resulting model achieves an error rate of
less than 1%, as shown by the symbol⋆ in Fig. 3.
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Fig. 3: Leakage power curve fitting.

2.2 Process variation model

Among many circuit parameters, the gate length plays a
dominant role in subthreshold leakage [20]. In our method-
ology, the process variation model generates gate length vari-
ation for all devices over the whole cache. The length infor-
mation will then become the input of the leakage model to
calculate total leakage power.

According to recent studies, intra-die variation is more
dominant than inter-die variation as technology size scales
down [3]. So in this paper, we only considered the intra-die
variations. Electrical measurements of a full wafer showed
that intra-die gate length variation has strong spatial correla-
tions [9]. This means that devices that are physically close
to each other are more likely to be similar than those that are
far apart. So we use the hierarchical correlation modeling
[14] widely used in CAD area to capture the length variation
among the devices.

Our model could be enhanced by considering more kinds
of process variations, such as the Vt variation due to random
dopant fluctuations. However, current model is sufficient to
show the non-uniform characterization lies in on-chip cache.
A more detailed variation model can only reinforce such non-
uniformity, and therefore providing more opportunities for
our proposed technique.

2.3 Thermal model

The thermal model used in this paper includes several
parts, the die which generate power and therefore the heat,
the interface material; which connects to heat spreader, and
heat sink. The thermal circuit model is generated by HotSpot
3.0 [21], as it provides grid-based model which is useful for
our cache block.

We solved the thermal circuit model using a rapid temper-
ature calculation algorithm, called Thermal Moment Match-
ing(TMM) [6]. The TMM calculated the transfer function
from power to temperatures in frequency domain, which is

much faster than the integral-based method used by HotSpot.
As we need to do the thermal simulation and a large number
of Monte Carlo simulation, a fast simulator is very important.
As leakage power is a variable to temperature, for each time
interval, we call the temperature function multiple times,un-
til the leakage becomes constant.

2.4 Reliability model

Processor errors can be generally classified into two cate-
gories, soft errors and hard errors. Soft errors, a.k.a. transient
faults, occur intermittently. Hard errors, on the other hand,
are permanent and physically damage the chips once the oc-
cur. In this paper, we only concern the reliability problems
due to hard errors. Srinivasan et al. proposed an architec-
tural reliability model, called RAMP [4]. The Mean-Time-
To-Failure (MTTF) is used as a metric for evaluation. RAMP
models four different hard-failure mechanisms. Three of
them have exponential dependencies on temperature.

As we divide the cache into a grid of cells to model the
process variation distributions, the temperature of each grid
cell is different throughout the simulation. To calculate the
total MTTF for a whole cache, we use the same assumption
as in RAMP: (1)The cache is a serial failure system, which
means the first instance of any failure causes the entire circuit
to fail, (2) each individual failure mechanism has a constant
failure rate, and follows an exponential lifetime distribution.
Based on the above assumptions, total MTTF of the cache is
the inverse of the sum of failure rate of all individual cache
cells of all four failure mechanisms.

MTTFcache=
1

λcache
=

1

∑n
i=1 ∑4

j=1 λi j
(4)

whereλi j represents the failure rate of theith cell due to the
j th failure mechanism. When determining the MTTF of the
cache over a complete workload, the failure rate is averaged
over time on a number of time intervals and the tempera-
ture within one interval is considered constant. As in [5],
we assume the four failure mechanisms contribute equally to
MTTFcacheat 80 degrees.

3 Analyses of a cache under process variation

With process variations, the leakage power in a cache
structure becomes increasingly non-uniform. Localized high
power density causes the temperature to increase well above
average, and warm up the neighboring circuits as well. High
temperature exponentially increases the circuit failure rate,
and in turn shorten the circuit life. Therefore, caches with
parameter variation are facing a more urgent reliability prob-
lem than circuit designers thought. In this section, we study
both the local and global effects of process variation on a
cache. Results are analyzed using three metrics: leakage,
temperature and reliability.

When simulating the temperature, we divide the cache
into a grid of 16 by 16, and treat the temperatures of all gates
inside one grid identical. Then we assume an average cache
access rate of 10%, which is an approximate average of 20
Spec2K benchmarks simulated in SimpleScalar. Dynamic
power is assumed to be evenly distributed over the whole



cache, and there are no lateral thermal resistances between
other function blocks and cache. Steady temperature of each
cache grid cell is collected.

In Fig. 4 and 5, we show the steady temperature profiles
for a cache without and with process variation respectively.
Fig. 4 has a rather balanced temperature distribution. The
center is warm, and the peripherals are a little bit cooler. The
maximum difference is within 0.5 degree. Fig.5 is based on
a cache with length variations. Its bottom right corner is very
hot, but the bottom left corner is almost 12 degrees cooler.
As a result, the profile shows a totally different distribution.
Although two caches have similar overall average tempera-
ture, their peak temperature varies greatly.
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Fig. 4: Temp. profile for an
ideal cache.
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Fig. 5: A sample of cache
with gate length variation.

We use the Monte Carlo method to evaluate a total of
10,000 cache samples. Such a sample size represents∼ 1%
error for estimating the standard variation or variance. Fig. 6
shows the leakage power of each grid at their steady temper-
ature. Values are normalized to that of a normal cache that
is shown in the left bar. Each cache grid cell has same area,
so a larger leakage means a larger power density which leads
to higher temperature. Fig.7 shows the steady temperature
statistic information.
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Fig. 6: Normalized leakage power for all cache grid
cells. Leakagemax∈(0.71, 13.72) with an average of 3.66.
Leakagemin ∈(0.27, 0.73) with an average of 0.42.

50

60

70

80

90

100

110

120

Te
mp

era
tur

e(C
)

Normal Cache TMax of     
PV based cache 

TMin of     
PV based cache 

Fig. 7: Steady temperature for cache grid cells. Average
temperature of a normal cache is 79.3◦C. Tmax ∈(74◦C,
115◦C) with an average of 86◦C. Tmin ∈(71◦C, 94◦C) with
an average of 79.9◦C, which is 0.6 degree higher than reg-
ular value.

With above information, we show the reliability of the
cache in terms of MTTF. Fig 8 shows the MTTF distribu-
tion normalized to an ideal cache. Here, the y-axis means

the number of occurrence among the 10,000 samples, and
the x-axis means the MTTF values normalized to an ideal
cache. The smaller the MTTF value means the shorter ex-
pected life time. Totally, 85% of the 10,000 simulated caches
have shortened lifetime. The mean value is 0.816, which in-
dicates that the average life time is shortened by 19%. The
worst case could have a lifetime of only 30% of a cache with-
out process variation.
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These statistic data reveal that, the cache under the pro-
cess variation not only has the thermal emergencies due to
local high power density, but also faces serious reliability
problems. In addition, the situation could be even worse un-
der real workloads since some of them may have large cache
access rates, and hit in a high leakage region frequently. In
order to alleviate such thermal and reliability stress, we pro-
pose a method to map the logic cache subarrays to different
physical positions in the cache, such that dynamic cache ac-
cesses do not always occur in high-leakage area. Our scheme
has little overhead and can be performed during runtime.

4 Thermal aware dynamical permutation
cache design

We have shown in the previous section that the process
variation induced leakage variation alone can generate un-
evenly distributed temperature across the entire cache. This
situation can be even worsened by the unbalanced cache sub-
array accesses that contribute to the dynamic power. In the
worst scenario, a highly leaked area could be highly ac-
cessed at runtime as well. Motivated by this observation,
we propose a dynamic runtime subarray permutation scheme
with an objective to balance the temperature distribution in a
cache.

There have been a number of techniques proposed to re-
duce the temperatures and the leakage power of on-chip
caches. The main idea is to distribute the power evenly in
a cache to reduce its power density. For example, cache
blocks are permuted such that the spatial locality does not
result in high access rate in one cache way [16, 13]. Another
solution is to create interweaved hot and cool cache blocks
by disabling idle blocks [16]. However, none of techniques
considered the impact of process variation. Since different
cache blocks have intrinsic differences in their leakage cur-
rent, and at runtime they may be stressed differently by dif-
ferent workloads, they should no longer be treated homo-
geneously. Static permutation schemes as proposed in [13]
and [16] cannot solve this problem. Instead, an adaptive reac-



tion to runtime temperature change should be adopted, taking
into account the fabrication variation factor.

The main idea of our scheme is to move the high access
rate from hot subarrays to cool subarrays. As the cool regions
warm up, the hot regions can have a chance to cool down.
Hence, at runtime, we periodically check whether certain
conditions are satisfied. If so, we permute the predecoded ad-
dress lines, such that the logic subarray positions are mapped
to different physical positions. Data stored in the original
place will be lost, but the time interval is long enough to
ignore the cache warm-up time. The detailed scheme has
some adjustments to reduce false permutations. We assume,
in future processors, large amount of thermal sensors will be
embedded on-die, so we can get run-time temperature infor-
mation to control the permutation scheme. In the following,
we first explain the hardware design, and then explain the
control algorithm.

4.1 Dynamic Subarray Permutation Cir-
cuit

We discuss how we modify the predecoded address sig-
nals. First, we show a simplified cache data array structure
in Fig.9. The cache here has four ways, each divided hori-
zontally into 8 subarrays.

Way 0 Way 1 Way 2 Way 3

Predecoded Address
Signals

SubArray 0

SubArray 1

SubArray 2

SubArray 3

SubArray 4

SubArray 5

SubArray 6

SubArray 7

ro
w 

 d
ec

od
er


ro

w 
 d

ec
od

er


Predecoder

Fig. 9: General structure of the cache data subarrays
The small block in the center is a predecoder. In order to

overcome the pitch-matching problem and reduce wire ca-
pacitance, the address decoder is usually divided into two
stages: predecoder and row decoder. The predecoder identi-
fies which subarray should be accessed for a given address;
and then the row decoder selects an appropriate cache line
inside that subarray. Thus, at any time, at most one of the
eight arrows in front of way 0 will become ’1’.

The subarrays inside each way are always placed in order.
As shown in Fig.9, the one at the top is always subarray0,
and the one at the bottom is subarray7. This is determined
by the wiring of the decoder. Since there are eight subarrays,
three address bits are needed to index them. The predecoder
can thus be implemented using a 3-to-8 decoder with sorted
outputs from 0 to 7. For example, when the address bits are
“000”, the decoder always activates the top most subarray0.

Our design is to insert 3 sets of crossbars into the pre-
decoded address lines, as depicted in Fig. 10. Each set is
comprised of 4 mini-crossbars. The function of crossbar is
depicted at the bottom of the figure. When the SEL signal
is set to ’0’, meaning no crossover, the output is the same as
the input; when set to ’1’, the two inputs are swapped in the
outputs. The leftmost crossbar swaps the address lines with
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Fig. 10: Crossbar structure for subarray permutation

distance of 1, the middle one with distance of 2, and right-
most one with distance of 4. For example, whenSEL321 is
set to “101”, it will not only swap the odd and even blocks,
but also move the lower 4 subarrays to the top.

There are totally eight (23) different configurations. With
three SEL signals being set or clear, we can move one sub-
array to any desired position. Having different SEL config-
urations for each way, two subarrays on same logical row in
neighboring cache ways can be put far apart.

At runtime, when we pick out two physical subarrays to
swap, we do not need to know their logical row numbers.
The new SEL signal is determined by:

SELnew= SELold ⊕ (Positiona⊕Positionb) (5)

The second XOR counts the bit difference between two
blocks’ position, and determines whether each crossbar has
to be set or not. The first XOR applies the difference on top
of current configuration.

4.2 Control Algorithm

We need a simple and lightweight control scheme to de-
termine when and how the permutation should be performed.
We assume there are enough thermal sensors to measure the
temperatures, and enough performance counters to log the
access rate of each subarray. Then for every 1ms, we invoke
the control algorithm once to check is there any permutation
required. The time interval is set to 1ms as OS performs
some housekeeping task on this time interval. As we will ex-
plain, the algorithm entails only some adders, comparators,
and logic gates. We can implement it all in hardware. Thus
the software overhead will be omitted in the evaluation.

During each time interval:

• First, we select the hottest and coolest subarray inside
each cache way.

• Second, if the temperature difference is more than 5◦C,
we perform a permutation.

• Calculate the new permutation setting from equa-
tion (5).

The 5◦C is an empirical threshold to trigger a permutation.
The smaller the threshold, the more sensitive the algorithm
is to temperature variations, and more frequent the permuta-
tion.

However, we have additional constraints to eliminate false
permutation (or simply swapping). False swapping happens
when high-temperature is caused by high leakage instead of
dynamic power, and swapping cannot change the distribu-
tion of leakage power. Such swappings are redundant, and



degrades the performance. We add the following two con-
straints:
• If the hot subarray’s temperature has been reduced since

last interval, we will keep the old configuration.
• If the access rate of hot subarray is less than that of the

cool block, or less than 5% in general, we choose the
second hottest subarray to swap instead.

The first permutation prevents overly frequent permutations.
When the current configuration does take effect in reducing
the peak temperature, we should simply keep it as is. The
second one tries to avoid doing false permutation.

4.3 Overhead Discussion

The hardware overhead lies in two parts. This first part
is the permutation circuit which consists of three stages of
crossbars for each cache way. Each crossbar has 16 pass-
transistors, which are simply pairs of NMOS and PMOS
gates. The area overhead of these pass-transistors can be
hidden in the existing space slacks within the eight prede-
coded address signals. This is because those signal wires are
fairly long, so they have intermediate large inverters to drive
them, and the wires are thus separated apart to accommodate
those drivers. These spaces along the path can be exploited
to place the pass-transistors. Therefore, the added transis-
tors on the path will not be a significant portion to the total
cache area. Timing wise, the delay on the pass transistors
can be shortened by increasing either the transistor sizes or
the driver sizes.

The second part is the circuit for the control algorithm.
According to the scheme, we need registers to hold the peak
temperatures of the previous interval. Comparators are also
needed to find out the hottest and coolest subarray; XOR
gates are needed to calculate the new ‘select’ signals. These
circuitry can be put on the side of the cache, and only be in-
voked on millisecond time interval. Hence, their timing over-
head is insignificant to the overall program’s performance.

As the control algorithm can be implemented in hard-
ware, the performance degradation is mainly dominated by
flushing the cache after each permutation. The granularity
of permutation is on the millisecond level. We collected the
number of permutation for 17 Spec2K benchmarks. The de-
tailed experiment setting will be explained in the next sec-
tion. The overall average permutation frequency is 1.06/ms,
which means on average, every millisecond, there is one
cache way being flushed out. From our experimental experi-
ence, L1 cache warm up time is typically on the order of tens
of thousands of cycles. Therefore, flushing a portion of the
L1 data cache once every millisecond on a gigahertz proces-
sor hardly has any effect on the performance of the program
execution.

5 Experiment setting

To evaluate our proposed techniques, we use SPEC2K
benchmarks, simulated in SimpleScalar [1]. The processor
configuration parameters are listed in table 1.

The number of reads and writes for each subarray were
recorded during the simulation. For all the benchmarks, the

Issue width 8 instructions
Number of RUU 128
Number of LSQ 32
Branch Prediction Bi-modal with 2048 entries
Integer ALUs (Mult/Div) 8 (2)
FP ALUs (Mul/Div) 8 (2)
L1 data cache 64KB, 4way,

32B blocks, 2 cycles
L1 instruction cache 64KB, 4way,

32B blocks, 2 cycles
L2 cache 512KB, 8way,

128B blocks, 16 cycles
Memory access time First access: 250 cycs

Subsequently: 6 cycs
Memory bus width 8 bytes

Table 1: Processor configurations

simulator was run for 500 millions instructions after fast-
forwarding a specific number of instructions determined by
SimPoint [22].

To calculate the temperatures, we use a time epoch of
1ms, far less than a processor’s thermal time constant which
is around 10 milliseconds [15]. Also, 1ms is the typical inter-
rupt period in an operating system. We assume the processor
clock frequency is 4GHz.

As for the process variation cache model, we picked one
from the 10,000 samples that has the leakage and MTTF
around the mean values of all samples. Thus, it can rep-
resent a typical process variation scenario. Fig. 11 shows
some details of this model. This cache has a similar configu-
ration as the data cache in Alpha 21364. It has 64KB, 4-way
and 32-Byte cache lines. According to CACTI 3.2 [23], the
optimal parameters for this cache are Ndwl=4, Ndbl=2, and
Nspd=1. With this configuration, each cache way occupies
on a column in the figure, and each way is broken into upper
and lower parts. And we further divide each part into four
subarrays. The darker area represents lower leakage power,
and brighter area means the opposite. Overall, the upper half
is lighter than the lower half. And the top right is even more
leaky.
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Fig. 11: Experiment model
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Fig. 12: Subarray leakage

To further quantify the leakage, in Fig. 12 we show the
total leakage power for each subarrays at 60◦C. The values
are normalized to leakage power of a subarray having a reg-
ular gate size. Due to the spatial correlation, the curves look
quite similar between different ways. Subarray 0 and 3 are
most leaky, and subarray 6 has the lowest leakage.

6 Experimental results

In this section, we evaluate the effectiveness of our
proposed dynamic permutation scheme, and compare it to
the baseline in-order subarray placement (labeled ‘Orig-
inal’), and the statically permutation placement (labeled



‘Static’) [16]. The initial temperatures for each benchmark
are set to the steady temperatures of the conventional cache.

We did not apply common low-power techniques such as
the selective cache ways [16], cache-decay [13] etc. Such
techniques not only save power, but also provide a lot of idle
and cool blocks, so that the remaining working blocks can
distribute their heat. In our experiments, we show that in the
worst case where no blocks are shut down for power savings,
we can achieve a large peak temperature reduction, and ex-
tend the cache’s lifetime.

Fig.13 shows sample temperature variations for Bzip2
benchmark. We show the temperatures of 8 subarrays in
way2 since other 3 ways are similar. The solid lines are for
the baseline cache. Among them, two lines are much higher
than the others because of the high access rates of subarray
5 and 6. The dotted lines show the result of our dynamic
scheme. As we can see, when detecting a high temperature
block, our scheme swaps it with a cool block, reducing the
temperature in the hot block effectively. As a results, the
temperatures in all subarrays are fairly close to each other
and around their average.

0 10 20 30 40 50 60 70 80 90
70 

75 

80 

85 

90

95

Time (ms)

T
e

m
p

e
ra

tu
re

 (
C

)

 Original  ...... Dynamic 

Fig. 13: A sample result of Bzip2– temperatures of 8 sub-
arrays in way 2.

In the following figures, we show the result of three dif-
ferent schemes: Original, Static, and Dynamic which is our
proposed permutation scheme. In the Static scheme [16], the
subarrays are permutated in fabrication and before the ship-
ment of the chip. Therefore, the configuration is hardwired in
circuit. The placement follows the rule that logically neigh-
boring subarrays are separated as much as possible, and same
subarrays of different ways are also separate.

In Fig. 14, we show the peak temperatures of the three
schemes. As expected, our Dynamic scheme achieves the
largest reduction in peak temperature: on average a 7.05◦C
drop from the baseline design. The Static scheme also re-
duces the peak temperature by 2.2◦C on average. We also
find that for Lucas , the peak temperature even increases a
little. This is because it has a very low cache access rate,
so most of the power consumption (more than 80%) are due
to leakage. If one block is hot, it is caused mostly by the
leakage not dynamic power, although a cool block may have
more accesses and dynamic power. Therefore, when block
placement is rearranged, it often made the wrong decision
and increased the dynamic power of an already relatively hot
block.

For static scheme, many benchmarks e.g. apsi, gcc show
higher peak temperature than baseline design. This is be-
cause static scheme has no selection for workload to subar-
rays. Its improvement on reducing temperature is not stable,
and depends on workload.

We remark that our dynamic permutation scheme work
particularly well with data intensive benchmarks. Among the
17 benchmarks, we picked those with average cache access
rate above 5%, the average peak temperature reduction can
achieve 8.5 degrees.
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Fig. 14: Peak temperature comparison
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Fig. 15: MTTF comparison

In Fig. 15 we show the MTTFs of the cache when run-
ning different benchmarks. For each benchmark, the values
of static and dynamic schemes are normalized to that of the
original cache in baseline (no permutation). When consider-
ing the reliability, the subarray with peak temperature usually
plays a more dominant role. This is because if one subarray
is constantly much hotter than others, it will have a higher
hard failure rate, which will lead to sooner failure of the
cache (when one subarray fails, the cache activities cannotbe
trusted so the entire cache is viewed as failed). Thus, those
benchmarks with large peak temperature reductions show a
better reliability improvement. Examples are Eon, Equake,
Gcc etc. Among all test programs, Eon achieves the largest
lifetime extension: 20.3% longer than the baseline cache.
The average of all benchmarks is 6.3%.

Another property observed from Fig. 15 is that for all
benchmarks, dynamic permutation scheme is better than
the baseline design (higher than 1) and also static scheme.
Even for Gzip, where dynamic scheme’s peak temperature is
slightly higher than static one. The reason is that the dynamic



scheme aims to achieve a globally balanced temperature pro-
file. Throughout the entire execution of a program, the tem-
peratures of different subarrays are maintained within certain
bound. So overall, it can always achieve a longer lifetime.
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Fig. 16: Total leakage power, normalized to baseline
cache

Finally, we show the leakage power reduction among
three cache schemes. On average, the static scheme reduces
the total leakage by around 1%, and the dynamic scheme re-
duces 2.6%. The leakage power reduction is not very promi-
nent. There are several reasons for this. First, as we reduced
the peak temperature, workload is shifted to cooler subarrays
and therefore, the leakage on cooler subarrays are increased.
Second, the leakage power variation within a narrow tem-
perature range is close to linear, although in a much larger
temperature range, it will become exponential with respect
to temperature. To further reduce the total cache leakage,
other low-power techniques such as selective cache way and
cache decay should be applied.

7 Conclusion

In this work, we have studied the effects of the process
variation on reliability and thermal issues of on-chip caches.
To the best of our knowledge, our work is among the first
to examine such effects of process variations. Our statisti-
cal simulations showed that parameter variations could sig-
nificantly reduce the cache lifetime to 81.6% of its original
lifetime on average. The cache temperature profiles show
large gradients across the whole cache. The maximum leak-
age power density ranges from 0.71 to 13.72 times of the
baseline value. To solve such a problem, we have proposed
a dynamic cache subarray permutation scheme using cross-
bars in the address predecoder. Through dynamically chang-
ing the cache block placement, we can alleviate the thermal
stress on high-leakage area, and reduce the peak tempera-
tures inside a cache. We tested our scheme on 17 Spec2k
benchmarks, the cache lifetime is extended by up to 20.3%,
and the peak temperature is reduced by 7 degrees on average.
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