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ABSTRACT
We present a new method for mathematically estimating the active unit
power of functional units in modern microprocessors such as the Pen-
tium 4 family. Our method leverages the phasic behavior in power
consumption of programs, and captures as many power phases as pos-
sible to form a linear system of equations such that the functional unit
power can be solved. Our experiment results on a real Pentium 4 pro-
cessor show that power estimations attained as such agree with the
measured power very well, with deviations less than 5% only.
Categories and Subject Descriptors: C.4[Performance of Systems]
General Terms: Measurement, Experimentation
Keywords: Power Estimation, Performance Counter, Microprocessor

1. INTRODUCTION
Power density has become one of the major constraints on attain-

able processor performance as integrated circuits enter the realm of
nanometer technology. The exponential increase in power density leads
to rapid growth in chip temperature, which jeopardizes the reliability
and the lifetime of the processor. Efficient runtime regulation of op-
erating temperature through dynamic thermal management therefore
becomes imperative. The prevailing studies on thermal managements
rely heavily on cycle-level simulators [8] which is neither accurate
enough nor efficient.

An alternative approach is to perform online monitoring and esti-
mation of the processor temperature [3, 4, 5]. The temperature is first
obtained through a runtime component-wise power estimation of the
processor, and second an analytical thermal modeling that computes
temperature based on the power estimations. This approach is gov-
erned by the two main elements – the quality of the power estimation
and the efficiency of the thermal modeling – keeping in mind that both
are performed at runtime. While the latter has been addressed in [4, 5],
the former remains challenging as all the schemes fall back on empiri-
cal component power inputs that are only good for showing the power
trend rather than a real power value. Since the temperature is derived
from power, a less accurate power input would cripple the thermal
modeling, devaluating the entire online thermal tracking scheme.

Recently, a mechanism for estimating the component and the total
power of a real microprocessor has been proposed [1, 2]. The idea is
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that each component unit power can be approximated and tuned un-
til the summation matches with the total power that can be measured
experimentally. The main obstacle of this approach, however, is that
the searching for component unit power values is still empirical, which
almost always involves manual tunings. In this paper, we introduce a
novel method for finding the component unit power. Our new method
incorporates a statistical method that solves for a vector of unit power
from a system of linear equations established through experimental
measurements. We tackle the difficulties in establishing a good ma-
trix equation, and develop a K-means based method that can search a
good set of solutions successfully. The set of unit power values solved
using our method is more trustworthy than that obtained through ex-
periential fitting. It will also benefit software simulators by providing
them with close-to-reality component power values. Our experience
evidenced that our new method delivers very good runtime power es-
timations on two Pentium 4 processors and can be applied to different
microprocessors.

2. PROBLEM STATEMENT
2.1 Problem Statement

The “components” we target to refer to the functional units (FU) in
a processor. For example, Fig. 1 shows the block level floorplan of
the FUs in the Willamette core. There are 22 FUs in total, divided by
dashed lines as shown in the figure. The powers for these 22 FUs are
the unknowns we target to solve. Here a power value is the active per
access power of an FU. This includes the dynamic power, the clock
power and the leakage power. The total processor power during an
execution of a program is expressed as:

i=22

∑
i=1

AFi ×Pi +Pidle = P , (1)

where Pi is the active power for each FU. AFi is the activity factor, Pidle
is idle power when no programs are loaded onto the processor and P is
the total processor power. The activity factor is the number of times the
FU is used during a unit time. It can be obtained through programming
the performance counters available in many modern processors. The
total processor power and the Pidle can be measured from the CPU
power lines externally. Hence, once we can attain all the AFis and the
P, multiple instances of equation (1) can be created through running
different programs so that a system of equations can be established
where Pis are unknowns and the rest are known.

Setting up a good system of equation (1) turns out to be critical in
finding accurate FU powers. A good system should consider as many
power consumption scenarios as possible. Moreover, since the total
power is measured externally, there are white noise and errors intro-
duced into P. Therefore, we need a way to establish good equations
and statistical techniques to eliminate the noise and errors from the
measurement.

2.2 Power Measurement Setup
To obtain the total power and the activity factors, we use the exper-

imental setup as in [1] to measure the total power of the processor and
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Figure 1: Floorplan of P4 Willamette core.

to log information (shown in Fig. 2). An Agilent Digital Multimeter
(DMM) 34401 is used to read the total current of CPU from the clamp-
on ammeter and transfer the data through a RS232 digital port into a
logging machine. We then compute the powers based on the logged
information. The logging time interval is 0.4 second.
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Figure 2: Experimental setup.
The activity factors of the FUs are obtained using the performance

counters that can be predefined and retrieved at runtime. The Pentium
4 supports totally 45 hardware events and 18 physical performance
counters [9]. When deriving the activity factor for each FU, we need to
understand correctly the actual activity each counter is accumulating.
Some AFs can be determined by a single counter, while others may
need to combine several counters. In Fig. 1 the blocks divided by solid
lines are assigned with different counters and the sub-blocks separated
by dashed lines share a common counter.

3. NEW METHOD FOR UNIT POWER ESTIMATION
In this section, we present our new method of estimating the unit

power of functional units of microprocessors. We take a two-step ap-
proach in this process.

• In the first step, we design a set of simple programs (microbench-
marks), each of which exercises only a small subset of FUs, to
obtain relatively rough values for the Pis.

• In the second step, we use those initial Pis to bound and guide
the searching for much more accurate results incorporating the
K-means based method on a set of significantly more complex
programs. The first step is described next.

3.1 Rough Estimation Using Microbenchmarks
The main purpose of designing the microbenchmarks is to have a

good initial approximation of the Pis for each FU. Each program is an
infinite loop with only one instruction type covering only a few per-
formance counters (or FUs) so the set of microbenchmarks covers the
complete set of counters and FUs. The advantage of designing such
simple programs is that each consumes nearly a constant power. The-
oretically each point in the power trace and the counter trace can form
an equation (1). However, due to the possible noise in the measured
power and the rotation effect in counter collection [1], using one point
from an entire trace to form one equation would incur significant er-
rors. It is much better to take the average over the entire trace so that
the noise and errors are canceled as much as possible. Hence, having
constant power and counter values can help to obtain more accurate
Pis. The collection of all microbenchmarks enable us to form a system
of equations as

MAF Pi +Pidle = P (2)

where MAF is the activity factor coefficient matrix of vector Pi. P is
the vector of measured powers for each microbenchmark. Our goal
here is to find a solution that best satisfies all the equations created.
We used the least square linear regression method in Matlab to solve
equation (2), and searched for the best solution such that:

∑
all equations

(∑
i

AFi ×Pi −P)2 (3)

is minimum. This criterion helps to reduce the accumulative error of
the computed power and the measured power. We plotted the two pow-
ers in Fig. 3 for all the microbenchmarks we ran. As we can see, the
computed Pis are fairly close to the measured power.
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Figure 3: The computed
power and the measured
power for microbench-
marks match very well.
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Figure 4: The inaccuracy of
using the power results from
the microbenchmarks on a
SPEC2K program vpr.

However, when we plug in the above initial Pis into the equations
such as the SPEC2K benchmarks, we observed large deviations of the
computed power from the measured power. Fig. 4 shows such an in-
stance. In this program, the computed power is less than the measured
power, indicating that some initial Pis are overly under-estimated and
need to be refined. In this next section, we explain the reasons and
propose a new method to mitigate this problem.

3.2 Fine Tuning the Unit Powers of FUs
The main reason for the inaccuracy from using the microbench-

marks is because they cannot cover all possible scenarios of power
consumption. For example, we used the “add” instruction in a mi-
crobenchmark to exercise the integer ALU. However, the ALU has
other arithmetic and logic operations such as “sub” “shift” as well.
Those consume different powers than the “add” operation. Similarly,
different binary inputs produce different power consumption in FUs.
Hence, it is more efficient to adopt a comprehensive set of benchmarks
that are sophisticated enough to show vastly different cases. We choose
the SPEC2K benchmark suite for this purpose.

When experimenting with large programs, it is advantageous to con-
sider as many scenarios as possible since large and complex programs
exhibit a variety of behavior. Fortunately, recent works have shown
that the behavior of programs are neither completely homogenous nor
totally random, and they can be categorized into phases [7]. Each
phase represents a unique behavior in terms of, e.g., IPC, cache miss
rates, etc. A program can enter the same phase at different times of
execution. We identified similar phase behavior for the collected coun-
ters and the measured power values. As an example, Fig. 5 shows clear
phases of program gzip in SPEC2K. Since each phase represents a dif-
ferent power characteristic, our goal here is to cover as many phases
as possible in order to establish a more complete set of equations for
solving the component power.

Identifying counter and power phases. To achieve our goal, the
first task is to identify different phases in the counter traces. In other
words, we need to cluster the points into groups such that each group
is a phase containing similar points and points in different groups are
different. The similarity is defined according to specific requirements
of the clustering. For example, the program phase studied in [7] uses
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Figure 5: The phase behavior of counters for gzip.
the Manhattan distance between two basic block vectors (BBVs) (the
usage frequencies of the basic blocks) as the similarity metric. The
smaller the distance, the more similar two BBVs and similar BBVs
belong to the same phase. Therefore, we need to develop our own
metric suitable for finding similar counter points.

We use the K-means [6] clustering method which is a simple global
optimization method for finding k independent sets. Once the points
in those traces are clustered properly, we create one equation for one
cluster only because similar points within a cluster do not give more
information and different clusters represent different power character-
istics. Next, we will explain the similarity metric we developed which
is used as the distance function in the K-means algorithm, followed by
the description of the algorithm itself.

Similarity in counter vectors. The data points we cluster here are
the counter vectors extended by one more dimension for the measure
power. Intuitively, if two vector points are similar, their corresponding
components should be quite close to each other in value. The com-
monly used Manhattan distance for two vectors can quantify this sim-
ilarity. However, the distance alone is not sufficient since we also care
for the correlation of two values for each individual counter as well.
For example, if the first components of two vectors are the same, but
the second components have opposite differences from the first com-
ponent even with the same distance, we do not consider them similar.
To make it clear, let us look at the following example where three vec-
tors, A, B and C, are shown, each vector being eight-dimension.
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Figure 6: The difference between the distance and the correlation.
In Fig. 6, the x-axis shows the components of the vectors, and the

y-axis shows the corresponding values. The distance from A to B and
A to C are the same. However, A and B are strongly correlated as the
curves show a similar shape. Whereas A and C are not correlated since
the second spike in C is in negative direction compared with that in A.
During the clustering, A and B should belong to the same cluster, but
C does not.

The Manhattan distance between vectors a and b is defined as:

Dmanhattan(a,b) =
n

∑
i=1

|ai −bi| ,

where n is the dimension. The correlation of two vectors is statistically
defined by the “correlation coefficient” (CC) as:

{

CC(a,b) =
Cov(a,b)√

Cov(a,a)Cov(b,b)

Cov(a,b) = n∑n
i=1 ai ∗bi −∑n

i=1 ai ∑n
i=1 bi

The CC is a value in [-1, 1], and it indicates the correlation between
two vectors as follows:



















|CC| > 0.8 linearly correlated
|CC| < 0.3 not correlated
CC > 0 positively correlated (one increases,

the other also increases)
CC < 0 negatively correlated

Before defining our similarity metric, we need to pre-process the
counter trace as different counters may differ in values by orders of
magnitude. In order to avoid one counter taking over other counters
numerically, we need to first normalize every component of a vec-
tor.We define that the similarity of two vectors is high when their Man-
hattan distance is small and their CC is large. Hence, our similarity
metric for two vectors v and w is defined as:

Simi(v,w) = CC(v,w)× (1−Dmanhattan(v,w)′) .

where Dmanhattan(v,w)′ equals to the original distance divided by total
dimension number, such that it was projected to the interval of 0 to 1.
Hence, when two vectors are same, the similarity value between them
would be maximum, as their distance is zero and CC is 1. We now
explain how the similarity metric is used in the K-means algorithm.

The K-means algorithm. The K-means clustering algorithm is an
iterative optimization process. It clusters data points into K disjoint
subsets. Each subset has a centroid which is usually the mean of the
points in that cluster. The objective of the iteration is to minimize the
total distance of points to their corresponding centroid. In our case, we
replace this distance function with our similarity metric, and iteratively
maximize:

K

∑
j=1

∑
x∈cluster j

Simi(x,ϕ j) , (4)

where ϕ j is the centroid vector of the jth cluster. The algorithm starts
with a random selection of K vectors as the initial K centroids. Then it
iterates the following steps until convergence:

1. Put each vector into a cluster with the maximal similarity metric
between the vector and the cluster centroid.

2. Recompute the centroid of each cluster. The centroid is the av-
erage of all the members in the cluster.

The above steps are repeated until all clusters are stable. Notice that we
have assumed the number of clusters, K, is predetermined. However,
finding an appropriate K is critical to obtaining a good clustering. To
see what value is good for K, we varied it and measured the minimal
Simi(x,ϕ j) for all j = 1 · · ·K. We use Gzip as an example, and the
results are shown in Fig. 7.
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Figure 7: The variations of similarity with K.

According to our definition of the similarity metric, the larger the
K the better the clustering and the larger the similarity metric. This
is because when K is large, the points within a cluster are closer to
each other so they are more similar to the centroid. As we see from
Fig. 7, after K = 16, the similarity is higher than 0.9, and the first time
it exceeds 0.95 when K = 33. However, the similarity does not grow
linearly with K. After K = 33 the increase levels off. Therefore, we
choose this value as our K since it is sufficiently good.

Once we found 33 phases for the counter and power traces collected
for one program, we can set up an equation for every phase and the col-
lection of all phases in all programs forms an over-determined linear
system as in (2) where the number of equations is more than the num-
ber of unknowns. Fig. 8 shows the reordered traces of those in Fig. 5
when we put all the points belonging to the same phase together. The
phases are separated by dotted lines in the graph. As we can see, the
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counters in each phase are fairly flat, analogous to those microbench-
marks. Therefore, the representative counter and power values can be
obtained by averaging the points within a phase. In fact, it is the equa-
tion for the centroid of the cluster.
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Figure 8: The sorted traces showing the phases for gzip.

We used the least square linear regression method to solve the es-
tablished over-determined system of equations. For a linear regression
problem, the more the number of equations the better the fitting. Also,
it requires a good solution range to find the best fit. We use the so-
lutions obtained from the microbenchmarks to create proper ranges.
Such a method turns out to be quite effective. The results are presented
next.

4. EXPERIMENTAL RESULTS
We have implemented this power estimation method on a Linux ma-

chine with a Pentium 4 Willamette processor. The Willamette core
runs at 1.6Ghz with 0.18µ technology. The core operating voltage is
1.75V and the typical power dissipation is 60.8W. The first and very
important result we present is the comparison between our calculated
power from dynamic counters and the measured power from the DMM
(Fig. 9). It is not surprising to see that we are able to obtain very good
power estimations as demonstrated by 10 SPEC2K programs. It is
noteworthy that the program vpr shows a much better match compared
with the solution obtained from running only the microbenchmarks as
shown in Fig. 4.
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Figure 9: The computed and measured total power
The deviation of our computed power and the measured power is

shown in Fig. 10. The average deviation rate is 4.5%. Here we do
not term the deviation as error since the measured power may have
white noise from the DMM. Also, there is no data available showing
the runtime power consumption of the 10 SPEC2000 benchmarks. So
we average the measured power corresponding to each counter cluster
as a representative value for all the power trace in that cluster. The
deviation is calculated as:

Deviation =

√

∑i=n
i=1(Measuredi −Computedi)2

√

∑i=n
i=1(Measuredi)2

×100% ,

where n is the number of clusters we found for each benchmark with
at least 0.95 similarity in clustering.
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Figure 10: Percentage of deviation for 10 SPECs benchmarks.
Finally, we list the active power for each FU in Fig. 11. Note that

the result obtained from solving equation (2) is per access FU power,
which is the total FU energy consumed during one access divided by
unit time. We need to further normalize the power value according to
each FU’s latency. According to Willamette’s specification, L1 cache
has two-cycle latency and L2 access lasts 7 cycles. We assumed all
other latencies are one cycle, meaning that they are the per access en-
ergy consumed in one cycle.

Function Units Power (W) Function Units Power (W)
Bus Contrl 11.0 L2 Cache 12.9

2nd level BPU 7.7 ITLB/Ifetch 3.5
L1 cache 2.6 MOB 13.5

Memory Control 0.5 DTLB 6.1
FP Exec. 3.6 Int Exec. 0.5

Instr Decode 10.0 Trace Cache 2.5
1st Level BPU 6.8 Microcode ROM 3.0

Retirement 2.5 Idle Power 22.3

Figure 11: Active power (Willamette) for each FU.

5. CONCLUSION
In this paper, we have described a new method for accurately es-

timating the active power of FUs in modern processors. The new
method estimates the unit powers by solving the linear equations from
statistically measured data. We used uncorrelated microbenchmarks
to roughly estimate powers for functional units and K-means clustered
power traces for fine tuning the unit powers. Our experiment results on
Pentium 4 Willamette show that our power estimations agree with the
measured power very well and the deviation errors are less than 5%.

6. REFERENCES
[1] C. Isci and M. Martonosi. Runtime power monitoring in high-end processors:

methodology and empirical datar. In the 36th Annual International Symposium on
Microarchitecture, pages 93–104, 2003.

[2] R. Joseph and M. Martonosi. Run-time power estimatino in high-performance
microprocessors. In International Symposium on Low Power Electronics and Design,
pages 135–140, 2001.

[3] K.-J. Lee and K. Skadron. Using performance counters for runtime temperature
sensing in high-performance processors. In the Workshop on High-Performance,
Power-Aware Computing, April 2005.

[4] H. Li, P. Liu, Z. Qi, L. Jin, W. Wu, S. X.-D. Tan, and J. Yang. Efficient thermal
simulation for run-time temperature tracking and management. In International
Conference on Computer Design, pages 130–133, 2005.

[5] P. Liu, Z. Qi, H. Li, L. Jin, W. Wu, S. X.-D. Tan, and J. Yang. Fast thermal simulation
for architecture level dynamic thermal management. In IEEE/ACM International
Conf. on Computer-Aided Design, pages 639–644, 2005.

[6] J. MacQueen. Some methods for classication and analysis of multivariate
observations. In Proc. Fifth Berkeley Symp. University of California Press 1, pages
281–297, 1967.

[7] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing
large scale program behavior. In The Tenth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 45–57, 2002.

[8] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan.
Temperature-aware microarchitecture. In the 30th International Symposium on
Computer Architecture, pages 2–13, 2003.

[9] B. Sprunt. Pentium 4 performance-monitoring features. IEEE Micro, 22(4):72–82,
2002.

557


