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Reducing the power consumption of computing devices has gained a lot of attention recently. Many

research works have focused on reducing power consumption in the off-chip buses as they consume a

significant amount of total power. Since the bus power consumption is proportional to the switching

activity, reducing the bus switching is an effective way to reduce bus power. While numerous

techniques exist for reducing bus power in address buses, only a handful of techniques have been

proposed for data-bus power reduction, where frequent value encoding (FVE) is the best existing

scheme to reduce the transition activity on the data buses.

In this article, we propose improved frequent value data bus-encoding techniques aimed at

reducing more switching activity and, hence, power consumption. We propose three new schemes

and five new variations to exploit bit-wise temporal and spatial locality in the data-bus values. Our

techniques just use one external control signal and capture bit-wise locality to efficiently encode

data values. For all the embedded and SPEC applications we tested, the overall average switching

reduction is 53% over unencoded data and 10% more than the conventional FVE scheme.
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1. INTRODUCTION

Power dissipation is a critical design criterion for embedded systems and espe-
cially for mobile computing devices [Semiconductor Industry Association 2003].
These devices often draw their current from batteries that place a limited
amount of energy at the system’s disposal. Consequently, reduced power and
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Fig. 1. Average normalized hits for FV, MSB and LSB.

energy consumption of embedded devices translates to longer battery lives and
reduced cooling requirements.

Off-chip and On-chip bus lines in VLSI circuits are associated with very
large capacitances and they are a major contributor to a system’s total power
consumption. The power consumption in the bus drivers is in direct proportion
to the product of the average number of signal transitions and the line ca-
pacitance. Capacitive load of off-chip buses is orders of magnitude larger than
that of internal switching nodes [Chern et al. 1992; Givargis and Vahid 1998;
Weste and Eshraghian 1998]. At the expense of a small internal energy cost
bus-encoding schemes encode bus values to significantly reduce the bus power
during off-chip-transmission.

Both address and data streams are amenable to encoding. Efficient schemes
to exploit the sequential and stride behavior of instruction address streams
have been proposed [Basu et al. 2002; Benini et al. 2000; Givargis and Vahid
1998; Stan and Burleson 1995]. However, the difficulty in encoding off-chip data
bus values lies in the fact that off-chip data streams are less regular.

In off-chip data traces, the high order bits (MSBs) and the low order bits
(LSBs) of a data value occur a lot more frequently than the entire data value.
For example, if the value 80485678 occurs 10,000 times, then one could safely
assume that 8048 occurs at least 10,000 times in the high-order bits, and the
value 5678 occurs at least 10,000 times in the low-order bits of data values. In
other words, partial data value locality is at least as abundant as data value
locality. We propose that, besides storing the values encountered in the recent
past, the high- and low-order bits of the values should also be stored in separate
tables. The intuition behind doing so is that, for every repeating data value,
there might be many nonrepeating data values that contain the same high-
or low-order bits. Throughout this article, we will refer to repeating values as
frequent values (FV) and nonrepeating values as nonfrequent values.

Figure 1 shows the average normalized hits for the MSB, LSB, and the MSB-
LSB portions of data values for the benchmarks in NetBench, MediaBench, and
the SPEC2000 application suites. A scheme that encodes both the MSB and LSB
portions besides encoding the entire data values can efficiently exploit the large
hit rate in the MSB and LSB portions. Throughout this article, we will refer to
this scheme as the FV-MSB-LSB scheme.
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Fig. 2. Common strides of repeating values in Jpegdecode benchmark.

To better understand the need for caching the entire as well as partial data
values we evaluated the following: for each repeating data value, we measured
the number of cycles it takes for the value or its portion to recur. Figure 2 sum-
marizes our results for the Jpegdecode benchmark [Burger and Austin 1997].
The x-axis shows the bit-width of the values under consideration and the y-axis
shows the percentage contribution of values occurring within k-cycles (k = 1,
15, 60, and >60). For entire data values (32-bits wide), 30% of the frequent val-
ues repeat within the next cycle. When a value repeats in consecutive cycles, it
does not result in any off-chip bus transitions even in the absence of an encoding
scheme. Hence, encoding such occurrences of frequent values would not yield
any significant energy savings. Nearly 33% of the hits shown in Figure 2 repeat
within a span of 15 cycles. Encoding such values would yield higher savings.
About 20% of the repeating data values recur after 60 cycles. Data values of
smaller widths repeat more frequently than data values of larger width. Hence,
encoding schemes that can capitalize on temporal locality in both entire and par-
tial data values would be highly effective in reducing the energy consumption.

In this article, we propose three novel data bus-encoding schemes to reduce
power consumption in the off-chip data buses. FV-i encoding extends the fre-
quent value encoding (FVE) [Yang and Gupta 2001] scheme to maintain a larger
window of recently encountered data values and is, hence, capable of encoding
more data values than the original FVE scheme. FV-i-MSB-j encodes both entire
data values and the most significant bits (MSB) portions of repeating data val-
ues. FV-MSB-LSB encodes entire data values as well as the MSB/LSB portions
of data values. The FV-MSB-LSB scheme provides an average energy reduc-
tion of 53% over unencoded data and yields an additional 10% improvement in
energy on top of FVE.

The remainder of this article is organized as follows. In Section 2, we discuss
the related work. In Section 3, we describe our data bus-encoding schemes
and its variations. In Section 4, we describe our experimental framework. In
Section 5, we evaluate the energy consumption of our schemes and the energy
consumed in the off-chip bus. In Section 6, we analyze the impact of our encoding
schemes on performance of the system, and in Section 7, we conclude.
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2. RELATED WORK

Data bus-encoding schemes, like bus-invert coding [Stan and Burleson 1995]
adaptive coding [Komatsu et al. 1999], and FVE [Yang et al. 2004; Zhang et al.
2000], do not assume any prior knowledge of the application. A scheme that
operates without prior knowledge of input data is highly desirable because in
many application-domains, knowing the data in advance might prove to be a
very stringent requirement.

Bus-invert coding [Stan and Burleson 1995] transfers a data value either
in its original form or in its complement form depending on whose hamming
distance with the previous bus transmission is smaller. An external complement
signal is used to let the destination know that the value sent on the bus is in
one’s complement form, and hence, it should not be interpreted as is. It is a
simple method that assumes values are uniformly distributed across the entire
value space.

The adaptive encoding scheme [Benini et al. 1997], taking the next step fur-
ther, is capable of online adaptation to the value streams by learning the statis-
tics on the fly. As collecting the accurate statistics for the value streams can be
very expensive, the proposed adaptive encoding operates bit-wise rather than
word-wise. Thus, it loses the correlation among the bits within a single value.

Gray code encoding [Su et al. 1994] capitalizes on the observation that con-
secutive values are often sent during successive bus cycles. If gray code was
used for representing addresses, sending consecutive values would result in
only one transition on the bus. In T0 encoding 3, an external control signal is
used to indicate that the current and previous bus values differ by one, and
there is no transition activity in the bus wires while sending the second value.
Though these schemes work well with address streams, they do not work well
with data streams because sequential data values are rarely sent on successive
bus cycles.

Bus expander [Citron and Rudolph 1995] and dynamic base register caching
(DBRC) [Ferrens and Park 1991] propose compaction techniques to increase the
effective bus-width. DBRC uses dynamically allocated base registers to cache
the higher order bits of address values. Ramprasad et al. [1999] applied a gen-
eral communication model to analyze the bus-encoding schemes. Victor and
Keutzer [2001] address the problem of minimizing effect of interwire capac-
itance by converting a data value sequence into a self-shielding sequence in
which no two adjacent bus lines change in opposite directions at the same time.
For a 32-bit bus, this scheme needs additional 14 bus lines in order to minimize
the cross-talk delay.

Figure 3 shows a symmetric pair of coders that are usually used for bus
encoding. An encoder/decoder (codec) is placed at the memory side and the
processor side of the off-chip data bus. The codec decides whether the data
value should be encoded or not before placing the value on the data bus. When
the codec encodes data values, it asserts a control signal to let the destination
know that the current value is encoded and hence, it should not be interpreted
“as is.” The codec design is symmetrical in nature to handle both read and write
operations by the CPU. In case of a CPU read, the processor side codec works
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Fig. 3. A symmetric bus codec used in processor to memory communication.

as a decoder; while the memory side codec encodes the value to minimize bus
switching. In case of a CPU write, the processor side works as an encoder and
the memory side codec works as a decoder.

Table-based encoding schemes exploit temporal locality of data values in
order to encode data. In these schemes, tables (or their variants) are used to
store recently seen data values or their portions in order to encode/decode data.
At the end of every bus cycle, the contents of the encoder and decoder tables are
exact replicas of each other. When a new value comes in, the tables are checked
to see if the value was encountered in the recent past. If the incoming value was
seen before, instead of sending the entire data value, a code corresponding to
the value is sent. Most of the table based schemes do a fully associative search
on the table entries.

FVE [Yang and Gupta 2001; Yange et al. 2004] is a symmetric table-based
scheme that operates in a manner similar to the scheme described above. The
FV codec has a k-bit, k-entry table to store previously seen data values. Here,
k is the width of the data bus. Before placing a data value on the data bus,
the encoder compares the data value with the values stored in the table. A hit
in the table implies that the current data value had been encountered in the
recent past. In case of a hit, the codec generates a code corresponding to the hit
index in the table. The code has the form of “one-hot” code meaning that there
is only a single “1,” and its position corresponds to the hit index in the table.
In the event of a miss in the table, the data value is stored at the encoder and
it is then sent over the bus “as is.” The decoder checks to see if the data bus
value is a one-hot code. If the bus value is a one-hot code, the decoder reads the
data value from the table by using the one-hot code as an index to the table.
If the data bus value is not encoded, the decoder stores the value in the table
and sends the value “as is.” Data values are maintained in the table using the
LRU replacement policy. This technique has been shown to work very well for
off-chip data buses.

Self-organizing list-based encoding [Mamidipaka et al. 2001] minimizes the
transition activity between the codes assigned to the most frequent incoming
symbols. Their technique efficiently exploits the sequential nature of address
streams and the locality of addresses in multiplexed address bus values. Work-
ing zone encoding (WZE) [Musoll et al. 1998] keeps track of a few working zones
that are favored by the application. Whenever possible, the addresses are ex-
pressed as a working zone offset along with an index to the working zone. The
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encoder and decoder have a few registers to keep track of the working zones
and the index selects the current working zone’s value from one of the registers.
They also extended the WZE scheme for data buses. The working zone offsets
are encoded using one-hot codes. However, this technique requires extra bit
lines leading to redundancy in space.

LV et al. [2002] proposed a dictionary-based encoding scheme where in the
upper few lines of the bus wires are kept in a high-impedance state and the lower
bits are encoded. While this scheme works well for large-sized caches, traces
with smaller cache sizes often tend to exhibit high entire data value locality.
Hence, this scheme fails to exploit the occurrences of entire data values and
consequently, the reduction in switching activity is not significantly high. We
observed that any scheme that exploits data value locality should be able to
exploit entire as well as partial data value locality in order to achieve optimal
energy savings.

Our work differs from all of the aforementioned works in the following aspect.
Our innovative schemes exploit value locality in full-width data streams as well
as partial-width data value streams. The most important difficulty we solved
here is not to increase the number of control signals outside the data bus.
Our technique uses just one external control signal to indicate the presence
of encoded values on the data bus. Our encoding schemes are also capable of
maintaining a larger history of data values than the maximum possible history
length in the FVE scheme and hence, our schemes have a higher probability of
encoding incoming data values in the presence of data locality.

3. PARTIAL- AND FULL-WIDTH DATA BUS ENCODING SCHEMES

In this section, we describe the following three low-power bus-encoding tech-
niques for efficient processor to memory communication.

—FV-i encoding: It is an extension to the FVE scheme [Yang and Gupta 2001].
It encodes entire data values and uses just one external control signal to
encode more values than the original FVE.

—FV-i-MSB-j encoding: encodes entire data values or the K-Most significant
bits of data values (K is fixed by the designer).

—FV-MSB-LSB: encodes entire data, MSB portion and/or LSB portion of data
values.

We would first describe the high-level design methodologies including how to
implement a larger value history table size, how to incorporate MSB and LSB
values and how the data correlation/decorrelation is done. We then elaborate
each technique and its variations in detail.

3.1 Design Methodologies

3.1.1 Increasing the Table Size. The FVE scheme sends a one-hot code for
a data value, if it is contained in the frequent value table. However, the size
of the frequent value table has the following limitation: For a k-bit wide data
bus, the number of entries stored in the frequent value table cannot exceed
k. Consequently, a value can be encoded only if it is contained in the k-stored
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entries. By storing more than k entries, one has a higher probability of encoding
an incoming data value. However, if we try to encode more values within the
framework provided by the FVE scheme, we would require additional external
control signals.

Control signals require the availability of a free pin on the chip and are,
hence, very expensive to provide. So, we propose a framework that does not
increase the number of control signals required by the original FVE (which is
one) when we increase the table size. However, increasing the table size does
require more number of control signals. The trick is to utilize portion of data
bus wires as control signals. For the remainder of this article, we will refer to
these data bus wires as internal control signals. If the enlarged table size is
a multiple of the base table size, the internal control signals can serve as the
index to the different portion in the table. For example, a double-sized table
needs only one internal control signal to indicate whether the code is generated
from the first half or the second half of the table. In this case, the internal
control signal reduces the effective base encoding table size by one. The next
question is what portion of the data bus should be selected as internal control
signals. Through our experiments, we found that the transition activity in the
lower-order bits of the data bus is often slightly higher than the activity in
the high order bits. Hence, while sending encoded values, we choose to make the
least significant bits as control signals. By doing so, they would not contribute
much to the total switching. In summary, our proposed method for increasing
the table size can be put formally as follows:

Consider a k-bit wide data bus. In order to keep a history of more than k,
k-bit values, the number of entries stored in the table is of the form (k – m) ×
2m, where m represents the number of internal control signals. Using the first
k − m lines, we send a one hot code corresponding to i mod (k-m) where i is the
hit index in the enlarged frequent table. The last m lines, along with the index
transmitted on the bus, are used to specify the position of the data within the
table. For this scheme, the maximum number of transitions while sending any
encoded value is m + 1.

3.1.2 Bit-Width of Stored Values. As stated earlier, besides storing entire
data values, we also store the MSB and LSB portions of the data value in
separate tables. In order to determine the optimal width of the MSB and LSB
entries, we varied the bit-width of the entries from 2 to 29 bits in steps of 1
and observe the switching reduction for each case. The results are provided in
Section 6. Since we encode table hits using one-hot code, the number of table
entries should be equal to the bit-width of the stored entries. However, as shown
in Section 3.1.1, we can maintain more entries in the FV, MSB, and LSB tables
using internal control signals.

3.1.3 Correlator/Decorrelator. We use a correlator/decorrelator in all of
our encoding schemes. At the encoder’s end, the correlator XORs, the cur-
rent data value with the previous data bus value. The correlator’s output is
placed on the data bus. At the receiving end, decorrelator XORs, the current
and previous data bus value to obtain the current data value. Presence of a
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Fig. 4. Codec structure for FV-i encoding scheme.

correlator/decorrelator combination ensures that an off-chip bus wire toggles
only for those bit-positions in which the data has a binary value of 1.

In the following subsections, we explain our encoding schemes in detail.

3.2 FV-i Encoding

Figure 4 illustrates the operation of an FV-i codec. FV-i scheme overcomes the
limitations of FVE by maintaining larger sized tables and can hence, encode
more data values. FV-i maintains larger tables using the method described in
Section 3.1.1. When i = 0, FV-i scheme becomes the FVE scheme. We evaluate
the performance of FV-i scheme for three values of i: 0,1, and 2. For a 32-bit
wide data bus, the number of table entries for FV-1 and FV-2 are 62 ((32-1) ×
2) and 120 ((32-2) × 4), respectively.

3.2.1 FV-i Encoder. The encoder receives the data value from the proces-
sor/memory, and it decides whether the data should be encoded before it gets
placed on the off-chip data bus. For every incoming data value, the encoder
looks up the FV table to check for past occurrences of the data value. The se-
lection logic sees the output of the tables and decides whether the data should
be encoded or not. If the selection logic decides to encode the data, it asserts
the encode signal and declares the encoded data as the current data bus value,
else it lowers the encode signal and sends the data value “as is.” The data bus
value passes through the correlator before it finally gets placed on the data bus.

3.2.2 FV-i Decoder. The decoder can receive encoded or unencoded data
from the data bus. The data bus value passes through the decorrelator and
then reaches the selection logic. The selection logic checks encode signal to see
if the data is encoded. If the data is unencoded, it is forwarded as is to the
processor/memory. Otherwise, using the one-hot code contained in the encoded
portion plus the internal control signals, the selection logic picks up the data
value from the FV table to construct the decoded value. The decoded value is
then forwarded to the processor/memory.

3.3 FV-i-MSB-j Encoding

In this scheme, in order to encode both the entire data and its MSB portion, we
have two tables: FV table and an MSB table. The FV table stores the entire data
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Fig. 5. Encoder structure for the FV-i MSB-j scheme.

value while the MSB table stores the “r most significant bits” of an incoming
data value. Here, r is a number that is fixed by the designer and is subject to the
constraint that r < k, where k is the data-bus width. We evaluate the perfor-
mance of three instances of this scheme: FV-0-MSB-1 (FVMSB), FV-1-MSB-2,
and FV-2-MSB-2. i and j refer to the factors by which the appropriate tables are
increased. For example, If we store k-bit wide and r-bit wide entries in the FV
and MSB tables, respectively, then FV-1-MSB-2 scheme would have k-entries
in the FV table and 2r-2 entries in the MSB table while FV-2-MSB-2 scheme
would have 2k-2 entries in the FV table and 2r-2 entries in the MSB table.
Here, FV-1-MSB-2 uses the rth bit position as internal controls signal for the
MSB table. Likewise, FV-2-MSB-2 uses the kth bit line and the rth bit line as in-
ternal control signals for the FV and the MSB tables, respectively. The following
paragraphs illustrate the codec’s operation as an encoder and a decoder.

3.3.1 FV-i-MSB-j Encoder. Figure 5 shows the FV-i-MSB-j encoder. For ev-
ery incoming data value, the encoder looks up the FV and MSB tables to check
for past occurrences of the entire data value and the MSB portion, respectively.
In the event of a hit in both tables, the FV hit takes precedence. The selec-
tion logic sees the output of the tables and decides whether the data should
be encoded or not. If the selection logic decides to encode the data, it asserts
the encode signal and declares the encoded data as the current data bus value,
else it lowers the encode signal and sends the data value “as is.” The data bus
value passes through the correlator before it finally gets placed on the data bus.

3.3.2 FV-i-MSB-j Decoder. Figure 6 illustrates the operation of an FV-i-
MSB-j decoder. The decoder can receive encoded or unencoded data from the
data bus. On an incoming data bus value, the selection logic checks the encode
signal to see if the data are encoded. If the data are unencoded, it is forwarded
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Fig. 6. FV-i-MSB-j decoder.

as is to the processor/memory. Otherwise, using the one-hot code contained in
the encoded portion, the selection logic picks up the data value from one or more
of the stored tables to accurately reconstruct the decoded value. For example,
if the selection logic finds that there is a hit in the MSB table only, and then it
picks up the MSB portion from the table and uses the LSB portion of the data
“as-is” to get back the data value. The decoded value is then forwarded to the
processor/memory.

Figure 7 illustrates the encoder algorithm for the FV-2-MSB-2 scheme. This
scheme uses upper and lower FV tables to store entire data values. The least
significant bit (0th bit) is used as an internal control signal to select one of these
two tables. Likewise the rth bit position is used to choose between the upper and
the lower MSB tables. Figure 8 illustrates the operation of FV-i-MSB-j encoding
with an example. In the third transaction, even though there is a hit in the MSB
table, the data value is sent unencoded. This is because the lower portion of the
data value is zero in all of its bit positions. Consequently, the encoder would
generate a 32-bit one-hot code for the MSB hit. When the decoder receives the
32-bit one-hot code, it would decode the bus value as a 32-bit frequent value. By
choosing not to encode such MSB table hits, FV-i-MSB-j scheme can effectively
encode the data using just one external control signal.

3.4 FV-MSB-LSB Encoding

The FV-MSB-LSB scheme aggressively encodes incoming data values by send-
ing one-hot codes for the entire data value, the MSB portion, and the LSB
portion whenever possible. To accomplish this, FV-MSB-LSB uses three tables:
a FV table, MSB table, and an LSB table. The following paragraphs illustrate
the codec’s functionality as an encoder and a decoder.

3.4.1 FV-MSB-LSB Encoder. Figure 9 illustrates the operation of a FV-
MSB-LSB encoder. For every incoming data value, the encoder looks up the
FV, MSB, and LSB tables to check for past occurrences of the entire data value,
MSB portion, and the LSB portion, respectively. In the event of a hit in multiple
tables, the FV hit takes precedence. If the selection logic is informed to encode
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Fig. 7. Encoding algorithm for FV-2-MSB-2 scheme.

the data, it asserts the encode signal and declares the encoded data as the
current data bus value, else it lowers the encode signal and sends data value
“as is.” The data bus value passes through the correlator before it finally gets
placed on the data bus.

Figure 12 shows the FV-MSB-LSB encoder algorithm. An FV hit is always en-
coded. When there is a miss in the FV table, we have the following possibilities:

—hit in both tables (encode both portions)

—hit in one of the tables

—miss in both (send data unencoded)
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Fig. 8. FV-i-MSB-j. An example. FV and MSB tables are implemented as content-addressable

memories (CAMs).
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Fig. 9. Encoder for the FV-MSB-LSB scheme.

Fig. 10. Decoder for FV-MSB-LSB scheme.

If there is a hit in the MSB table and there is a miss in the LSB table, we check
to see if the LSB portion is in the form of a one-hot code. If the LSB portion
is nonzero and is not in the form of a one-hot code, we encode the data. In all
other cases, the data are sent unencoded. This way, the destination can decode
the data value without any ambiguity. We adopt a similar approach during a
hit in the LSB table and a miss in the MSB table.

3.4.2 FV-MSB-LSB Decoder. Figure 10 shows the operation of an FV-MSB-
LSB decoder. The decoder can receive encoded or unencoded data from the data
bus. On an incoming data bus value, the selection logic checks the encode-signal
to see if the data are encoded. If the data are unencoded, they are forwarded as
is to the processor/memory. Otherwise, using the one-hot code contained in the
encoded portion, the selection logic picks up the data value from one or more
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Fig. 11. FV-MSB-LSB example. The FV, MSB, and LSB tables are implemented as content ad-

dressable memories (CAMs).

of the stored tables to accurately reconstruct the decoded value. For example,
if the selection logic finds that there is a hit in the MSB table only, and then it
picks up the MSB portion from the table and uses the LSB portion of the data
as is to get back the data value. The decoded value is then forwarded to the
processor/memory.

Figure 11 demonstrates the operation of FV-MSB-LSB encoder with an
example.
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Fig. 12. Algorithm for FV-MSB-LSB scheme.

4. EXPERIMENTAL SETUP

We modified the sim-outorder simulator in the SimpleScalar toolset [Berger
and Austin 1997] for our experiments. For MSB/LSB based schemes, we varied
the number of bits captured from 2 to 29 bits in steps of 1. Based on the average
reduction in switching activity for different benchmarks, finally we fixed the
number of bits to be captured for each scheme.

In order to evaluate the effectiveness of our encoding schemes, we used a wide
range of benchmarks that are representative of both embedded and desktop
application. Our test programs consisted of benchmarks from the MediaBench
[Lee et al. 1997], MiBench [Buthaus et al. 2001], NetBench [Memik et al. 2001],
and the SPECINT2000 [Standard Performance Evaluation Corporation 2000]
benchmark suites.
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Fig. 13. Average reduction in switching activity for varying MSB lengths.

SPECINT applications are normally run on desktoplike architectures with
multiple levels of cache memory. Hence, we opted for a second-level cache while
running SPECINT applications. While running embedded system applications,
we opted for architecture without L2 cache to closely mirror the commercially
deployed embedded systems. We fixed the L1 cache size at 4KB, and we did not
include a second-level cache in our simulated architecture while executing em-
bedded applications. We included a 64KB L2 cache while executing SPECINT
applications with ref dataset. We fixed the block size of the instruction and data
caches at 32 bytes. For a 32-bit wide off-chip bus, we assumed the on chip and
off-chip latencies of instruction and data caches to be one cycle and 100 cycles,
respectively. Figure 13 shows the percentages of average reduction in switching
activity for varying bit lengths. Based on the figure shown, we fixed the number
of MSB bits for FV-MSB-LSB, FV-2-MSB-2, and FV-1-MSB-2 to be 20, 19, and
20 bits, respectively.

The main objective of our encoding schemes is to reduce the energy consump-
tion in the off-chip bus. Switching activity on the bus indicates the number of
times during which the bus lines are charged and discharged and is proportional
to the dynamic power dissipated in the off-chip bus. We measure the reduction
in off-chip bus-switching activity in order to compute the energy consumption
of the bus.

5. ENERGY

5.1 Bus Power Model

We use a bus power model similar to the one discussed by [Catthoor et al. 1998].
In general estimating, the energy used in the off-chip interconnects is difficult.
We can approximate the capacitance for the bus using the formula:

Cbus = Cmetal × No. of Bus lines.

In this expression, Cmetal is the capacitance of the metal interconnect for
each bus line. Using the numbers given in [Catthoor et al. 1998], it is estimated
to be 20 pF. Cbus gives the effective capacitive load to be driven during a bus
transaction.
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Fig. 14. Layout of the CAM cell used in our design.

5.2 Coder’s Energy

In order to determine the energy consumed in the codec itself, we created an
actual layout of the CAM cell and other components used in our encoding
scheme. In the following paragraphs, we describe each of the codec compo-
nents in greater detail. Our codec design has four major components: tables,
correlator/decorrelator, selection logic, and timestamps.

Tables: These are used to hold the recently encountered data values or their
portion and are implemented as CAM cells. Figure 14 shows a CAM cell used
in our design. Since the CAM cell circuit is critical in our design, we used
two separate search lines: a Cbit line and a Bit line in order to decrease the
capacitance associated with the Cbit search line. We used the Cadence layout
tools and extracted the circuit from the layout. We used TSMC 0.18μ technology,
the most modern CMOS technology available to the universities through the
MOSIS program. We simulated the extracted netlists using Cadence’s Spectra
in order obtain the energy and delay information.

Correlators are implemented as XOR gates. They take the selection logic’s
output and the previous data-bus value as inputs. At the destination, the cur-
rent bus value is XORed with the last transaction value to get back the original
data. A correlator/decorrelator combination ensures that there is an off-chip bus
transition only in those bit-positions that contain a binary value of 1. Figure 15
shows the correlator circuit. Pi denotes the previous bus transaction, Ci denotes
the current output of the selection logic, and Bi denotes the current data bus
value.

Selection logic: chooses between a table hit and the unencoded data. Figure 16
describes the selection logic for the FV-i-MSB-j scheme. Based on the hits in
the FV and MSB tables, the selection logic picks the one-hot code, MSB code or
the unencoded data. The energy consumed in the selection logic is the sum of
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Fig. 15. Correlator.

Fig. 16. Selection logic for FV-i-MSB–j.

the energy consumed in the logic gates (LSB mask and MSB hit signal) and the
energy consumed by the selector (18 × 0.095pJ + 1.33pJ = 3.04pJ). Figure 17
shows the selection logic’s output for different inputs.

Timestamps: In order to evict stale table entries and to facilitate the ac-
commodation of new table entries, we use a 2-bit timestamp with 1 reference
bit. The reference bit is akin to a most significant bit, and it ensures that the
most recently accessed table values are not evicted from the table. The times-
tamps are shifted right every 16 cycles, and the priority selection logic of the
timestamp logic picks the value with the least timestamp. We found that the
energy consumption in the timestamp entries to be 0.07pJ and the delay as-
sociated with the update operation was 0.5ns [Suresh et al. 2003]. The energy
consumed by the priority selection logic of the timestamp circuit, as reported
in Yang et al. [2004], is 1.1pJ.
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Fig. 17. Input and output values for FV-i -MSB-j selection logic.

Table I. Energy consumed by codec components

Component Energy Delay

Selection logic 3.04pJ 0.2ns

XOR gates 0.095pJ/Transition pair 0.1ns

Timestamps 0.07pJ 0.5ns

32-bit, 32-entry table 13.6pJ 0.2ns

For simplicity, we will double the energy and delay spent by the encoder to
account for the decoder’s energy. Table I shows the energy and delay information
for different codec components. The following equation gives the total energy
consumption for our encoder:

Energyencoder = Energytables + Energytimestamps + EnergyCorrelator

+ Energyselection logic.

For our encoding schemes, the total energy consumption in the encoder is
the sum of the energy consumed in the FV tables, MSB/LSB tables, times-
tamps, correlator/decorrelator (XOR gates), and the selection logic. Using the
above formula, we calculated the value of Energyencoder for FV-0, FV-1, FV-2,
FV-1-MSB-2, FV-2-MSB-2, and FV-MSB-LSB to be 17.38pJ, 34.65pJ, 52.42pJ,
26.65pJ, 42.65pJ, and 37.88pJ, respectively. We calculated the total bus energy
per cycle using the following formula [Weste and Eshraghian 1998]:

Etotal = Eencoder + {Tr × CL × V 2}
# of cycles

+ Edecoder,

where, Tr = total number of transitions in the off-chip bus

CL = Load capacitance of the off-chip bus line.

V = Supply voltage.

Parameters used for the calculation are: CL = 20 pF and V = 3.3 Volts
[Catthoor et al. 1998].

From the equation above, we can infer that even while assuming a modest
switching activity of 10 transitions per each bus cycle, the bus energy consump-
tion is 2,000pJ while sending unencoded data. Since our encoding schemes
achieve nearly 50% reduction in switching activity, the energy saved during
each bus cycle is an order of magnitude more than the codec’s energy consump-
tion. Hence, the reduction in energy corresponds to the reduction in switching
activity for each bus-encoding scheme. Our codec’s energy calculation is highly
pessimistic. We assume that the encoder and decoder energy is spent on every
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Fig. 18. Average percentage reduction in energy for MediaBench, NetBench, MiBench, and

SPECINT applications. Ref data set was used while running SPEC int applications.

cycle by calculating worst-case energy consumption in each component of codec.
However, while sending unencoded values the selection logic at the decoder
end inspects the encode signal and no search operation is performed. Hence,
the energy consumption at the decoder end is lesser than the reported energy
for encoded values. We use the worst-case power consumption at encoder and
decoder ends because we find that worst-case power consumption (activity =
1) for codecs is significantly lower than the power consumption in off-chip bus
wires.

We estimate the area of a CAM cell from the layout and it is found to be
11μm2 in 0.18μm technology. We estimate the area overhead of CAMs by adding
the results of all the CAM segments in 0.18μm technology and it is found to
be 0.021mm2, 0.0226mm2,and 0.0314mm2 for FV-1-MSB-2, FV-MSB-LSB, and
FV-2-MSB-2, respectively.

Figure 18 shows the percentage reduction in energy for desktop and embed-
ded applications. For parser application, FV-MSB-LSB gives 21% improvement
over FVE scheme. For mcf benchmark, we get nearly an 18% improvement over
FVE scheme. For Route and Jpegencode, FV-MSB-LSB provides an additional
15% switching reduction on top of FVE. Applications like parser and mcf are
very pointer intensive and are hence highly conducive to MSB-based encoding
schemes. For such applications, the MSB-based schemes yield a switching re-
duction of nearly 20% on top of FVE. On an average, FV-MSB-LSB yields a 10%
improvement over FVE scheme. In the following paragraph, we illustrate the
area overhead of our schemes.

6. IMPACT ON PERFORMANCE

We achieve significant power savings using the codec, but it comes at the ex-
pense of a little performance penalty. The encoding and decoding operations add
extra latency in the processor-memory transaction and, hence, there is a slight
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Fig. 19. Average percentage increase in execution cycles for different encoder delays.

decrease in the overall performance. Using the contemporary VLSI technology
and the pipelined architecture, the codec can be easily implemented with a de-
lay of two clock cycles, which amounts to a single cycle delay at both the encoder
and decoder ends. We take the codec delay to be one cycle, two cycles, and four
cycles to evaluate the performance penalty. We instrumented the SimpleScalar
simulator to measure the performance penalty for a set of benchmarks and we
assumed an off-chip memory latency of 100 cycles. The average performance
penalty results for embedded system applications for different codec delays are
shown in Figure 15. From the figure, we can see that there is almost a dou-
ble penalty when the codec delay is doubled. On an average, we are incurring
0.06%, 0.29%, and 0.76% performance penalty with a codec delay of two cy-
cles for MiBench, MediaBench, and NetBench, respectively. However, we are
achieving 53% energy savings on an average with little performance overhead
(i.e., less than 1% among a set of benchmarks).

7. CONCLUSION

Entire and partial data values in off-chip data streams exhibit abundant
value locality. We proposed and evaluated three table-based data bus encod-
ing schemes: FV-i, FV-i-MSB-j, and FV-MSB-LSB. Through these table-based
bus-encoding schemes, we demonstrated that encoding both entire and par-
tial data values yields significant energy benefits. All of our encoding schemes
require just one external control signal. Our schemes make no prior assump-
tions regarding the input data and are truly dynamic in nature. We tested our
scheme on a subset of applications from the MediaBench, MiBench, NetBench,
and SPECINT2000 benchmark suites.

For each of our data bus-encoding schemes, we evaluated the codec’s energy
consumption based on an accurate layout-level description of the codec circuits.
FV-MSB-LSB provides nearly 53% energy reduction over unencoded data and
nearly 10% improvement over the FVE scheme.
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