Variation-Tolerant Non-Uniform 3D Cache Management in
Die Stacked Multicore Processor

Bo Zhao, Yu Du#, Youtao Zhangt, Jun Yang
Electrical and Computer Engineering Department
*Department of Computer Science
University of Pittsburgh, Pittsburgh, PA 15261

{boz6, juy9l@pitt.edu, *{fisherdu, zhangyt}@cs.pitt.edu

ABSTRACT

Process variations in integrated circuits have significant im-
pact on their performance, leakage and stability. This is
particularly evident in large, regular and dense structures
such as DRAMs. DRAMs are built using minimized tran-
sistors with presumably uniform speed in an organized array
structure. Process variation can introduce latency disparity
among different memory arrays. With the proliferation of
3D stacking technology, DRAMs become a favorable choice
for stacking on top of a multicore processor as a last level
cache for large capacity, high bandwidth, and low power.
Hence, variations in bank speed creates a unique problem of
non-uniform cache accesses in 3D space.

In this paper, we investigate cache management techniques
for tolerating process variation in a 3D DRAM stacked onto
a multicore processor. We modeled the process variation in
a 4-layer DRAM memory to characterize the latency varia-
tions among different banks. As a result, the notion of fast
and slow banks from the core’s standpoint is no longer as-
sociated with their physical distances with the banks. They
are determined by the different bank latencies due to pro-
cess variation. We develop cache migration schemes that
utilizes fast banks while limiting the cost due to migration.
Our experiments show that there is a great performance
benefit in exploiting fast memory banks through migration.
On average, a variation-aware management can improve the
performance of a workload over the baseline (where one of
the slowest bank speed is assumed for all banks) by 17.8%.
We are also only 0.45% away in performance from an ideal
memory where no process variation is present.

Categories and Subject Descriptors

B.3 [Hardware]: Memory Structures

General Terms
Design

Keywords
Process Variation, 3D Die Stacking, DRAM, NUCA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MICRO’09, December 12—-16, 2009, New York, NY, USA.

Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

1. INTRODUCTION

Scaling and integration for nanoscale CMOS transistors
and circuits present promising device density and perfor-
mance trends. However, one of the major hurdles in scaling
in nanometer regime is the difficulty in controlling the de-
vice characteristics precisely during fabrication, which leads
to parameter or process variations. Key characteristics in
both devices and wires affected by process variations are ei-
ther structural, such as gate length, wire width etc., or elec-
trical, such as threshold voltage, resistance per unit length,
etc. [29]. Those parameter variations have significant im-
pact on circuit performance, leakage and reliability. We will
focus on their impact on circuit performance in this paper.

Process variations can be classified into within-die (WID)
variations and did-to-die (D2D) variations. WID variations
refers to the differences in device features among transistors
on one die, while D2D variations refers to such mismatches
among different die. There have been active efforts recently
on WID variation tolerant designs such as improving die
yield [1,30], improving cache designs [11,21], improving re-
liability [13,14, 33], mitigating latency variations in pipeline
stages or various components in a chip [9,20,22,40], and low-
ering energy consumption or improving energy delay prod-
uct [15,38]. Recently, the proliferation of three-dimensional
(3D) die-stacked architecture gives rise to considerations in
both WID and D2D variations. 3D stacking is a technology
that stacks multiple active silicon die on top of each other,
and connect them through wafer bonding. The communi-
cation among different layers is carried in Through Silicon
Vias (TSVs). With this technology, it is possible to either
stack multiple 2D die into a powerful 3D chip, or implement
a processor using true 3D circuits. In either design choice,
process variations impact both the performance within each
layer and the communication among different die. That is
to say, the performance of the overall 3D processor is con-
strained by both WID and D2D process variations.

Among various 3D architectures, stacking cache or mem-
ory chips directly on top of a 2D multicore chip [4, 17,23~
26, 39] has gained its popularity due to 1) immediate boost
in on-chip memory capacity without increase in die area;
2) short core-to-memory interconnect delay because data
can be supplied vertically through TSVs which are orders of
magnitude shorter than horizontal wires that connect core
with memory within a die; 3) best heat dissipation capability
because the most active core layer can be built closest to the
heat sink; and 4) good scalability in number of layers. A re-
cent work performed a comprehensive study on performance-
energy tradeoffs between stacking SRAM and DRAM on top
of a 2D multicore layer. The conclusion is that using com-
modity DRAM cells with low standby power peripheral cir-
cuitry generates the best energy-delay product [39]. This is

primarily due to the low power and high density of DRAM
arrays which can compensate its low speed with large ca-
pacity (and hence low miss rates) within the same die area,
when compared with SRAM arrays. There have been great
amount of efforts on on-chip SRAM cache optimizations un-
der processor variations [1, 2,11, 18,21, 30, 35]. However,
there is little work on DRAM variations probably because
DRAMs are conventionally off-chip, so their latency changes
due to process variation have little impact on the overall
performance. Previous research showed that there can be
18ns read access latency (trac) variation in main memory
DRAM under process variation [42]. With the 3D integra-
tion of DRAM chips with multi-core chips, such latency vari-
ations will become more pronounced, especially where there
are both WID and D2D variations in a multi-layered DRAM
stack.

In this paper, we first model the process variations in a
multi-layered 3D DRAM stack integrated with a multicore
processor, then develop memory management techniques to
overcome the process variations. Our 3D DRAM architec-
ture follows closely a commercial product from Tezzaron
Corporation [46,47]. From our modeling results, we observed
that the DRAM subbanks in 3D space present a fairly wide
range of access latencies due to process variations. Such
latency variations create a 3D non-uniform access memory
for each core on-chip. Similar to the NUCA problem in
a 2D CMP, 3D NUMA (or NUCA, if the DRAM is used
as a cache) has a significant impact on the performance of
the entire chip. Unlike the 2D NUCA problem, such non-
uniformity is dominated by process variations, and less due
to the wire delay or interconnection network delay as in a 2D
CMP. We develop cache/memory management techniques to
overcome the non-uniform access times from different mem-
ory banks. The basic idea is to migrate data from slow banks
to fast banks to reduce the average DRAM access time. Such
migration was shown by our experiments to be very effec-
tive, especially when the working set of a workload fits into
the fast banks due to the large capacity provided by DRAM.
In those cases, we even achieve performance improvements
over the ideal chip where there is no process variations. We
further devised our migration schemes such that the energy
increase is minimized. On average, our variation-tolerant
migration scheme is 17.8% better than a conservative chip
where the speed of the slowest bank is used as the nominal
speed for all banks, and only 0.45% away from the perfor-
mance of the ideal chip. Our ED? is also 42% better than a
conservative chip and only 3% worse than the ideal chip.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the modeling of process variations in a true
3D memory architecture. Section 3 describes our proposed
cache migration scheme to overcome process variations. Sec-
tion 4 discusses the relate works. Finally Section 5 concludes
this paper.

2. ARCHITECTURE AND PROCESS VARI-
ATIONS MODELING IN 3D MEMORY-
STACKED MULTICORE CHIP

To understand the impact of process variations (PV) on
the performance of a 3D chip stacked with memory, we will
first introduce how a PV model is built for a true 3D DRAM.
In this section, we will explain the DRAM-on-processor or-
ganization, followed by its PV modeling and measurement.

2.1 3D Architecture of DRAM-on-Processor

There are a number of architectural options for a 3D chip
that integrates cores and cache (or memory) banks. The first
one is to interleave cores and cache banks both in each layer
and across layers, forming a staggered layout [3,19]. This
organization avoids direct stacking of active cores through
separating them with cooler cache banks. The second de-
sign revamps the original 2D circuits into true 3D circuits
such that a core or a cache bank spans across all layers of
the chip [4,31]. This design further reduces the wire latency
within every component of a processor to improve its per-
formance. The last architecture places all cores in one layer
that is closest to the heat sink, and all cache banks in the
remaining layers [17,23-26,39]. This topology has the best
capability in heat dissipation, and good scalability in num-
ber of layers. In addition, previous study has shown that
stacking DRAMSs on top of the core layer can result in low-
est energy-delay product [39]. Our 3D DRAM-on-processor
architecture will also be based on this design.

Core Layer. On the core layer, we incorporate 8 multi-
threaded 45nm cores based on the area parameter of Sun
UltraSPARC-T2 core [45]. We define the core area at early
stage of modeling since it is a constraint to the die area of
all the components, such as the memory banks, that will
be vertically aligned atop. In UltraSPARC-T2, each core
has an area of 12mm? in 65nm technology. We scaled this
core area to 5.8mm? in 45nm technology (~31% reduction in
each dimension). We also assume there is a private 256KB
8-way L2 cache per core. The area of each L2 is ~2.2mm?
as estimated by CACTI-D [39]. The layout of cores and
L2’s on the core layer is shown on the lower right corner of
Figure 1. As we can see, each core slice (core+L2) occupies
about 8mm?, resulting a total die area of 64mm?.
Memory Stack. For the memory stack organization, we
adopt a design similar to the FaStack 3D technology from
Tezzaron [46,47] because it provides faster access speed than
direct stacking of conventional 2D memories [17,23,25]. In a
conventional 2D memory, every cell array is equipped with
a row decoder, sense amplifiers, a row buffer, and column
select logic. Those are peripheral logic of the memory, and
are placed on the same die as the cell arrays. A true 3D
memory separates the peripheral logic from the cell arrays.
A flat memory bank can be divided into several subbanks
which are stacked together to form a 3D bank. Hence, the
interconnection wires within a bank are all shorter, which
reduces the access latency of the memory. In addition, all
peripheral logic are placed in a separate layer which connects
with the subbank layers through TSVs, forming a memory
of N + 1 layers where N is number of layers for cell arrays
and 1 is the peripheral control logic layer. Such an orga-
nization is depicted in Figure 1, where the memory has 4
layers of data banks and 1 layer of peripheral logic, denoted
as “Peri”, and some other components explained later. The
advantage of separating peripherals from the cell banks is
that the peripherals can be implemented using fast process
technology — the cell layers can be optimized for density
and the peripheral circuit can be optimized for speed.

Such a memory architecture is drastically different from
conventional off-chip DRAMs. 3D stacking greatly reduces
global wiring such as the data transport interconnect. We
also placed all peripheral logics on the interface layer using
fast process technology. The delay on the peripheral logic
including decoder, I/O latch, and I/O driver, are all greatly

Tag Bank
4 Buffers P 8
Cellé
ArrayS\A
|
Tol2& /
Crossbar

Tag+|Tag+|Tag +|Tag + 4
Peri | Peri | Peri | Peri
0 1 2 3
Crossbar
Tag+|Tag+|Tag+|Tag +
Peri | Peri | Peri | Peri
4 5 6 7

I
I
i
|
1

b4 “.‘ ﬁ\ = S‘,lubbanks

. rank

Bank/Column

Core | Core | Core | Core
0 1 2 3

e Lloe|loe|lw
Co i)
laye, |2 |2 | 2| 2

Core | Core | Core | Core

Stacking Architecture

Figure 1: Architecture of a 5-layer 3D memory stacked on top of an 8-core processor.

reduced. Even the wordline driving time is greatly reduced,
compared to off-chip DRAMs [27], because the drivers are
faster. The bitline discharge time is not reduced propor-
tionally because commodity DRAM cells are used for high
density. Therefore, it becomes a more significant portion
in the entire memory access time. In our experiment, the
bitline with sense amplifier latency amounts to 62% of the
total memory bank access time, slightly higher than a 2D
on-chip DRAM macro in [27].
Interface Layer. For the 8mm? core slice area estimated
before, it is difficult to fit in gigabyte of DRAM in the entire
column of memory banks atop the core slice. Considering
that each core is multithreaded, we choose to use the DRAM
banks as the last level cache (LLC) rather than the main
memory, similar to the design choice used in [39]. Hence, we
need additional transistor budget for the LLC tags which
occupy significant die area since the LLC is quite large. It
is not beneficial to place these tags in the core layer, as it
will expand the die area and increase the cross chip com-
munication delay. Hence, a reasonable design choice is to
place them along with the memory peripheral circuits since
fast process technology is used here. We term this layer the
“interface layer”, as shown in Figure 1. Analogously, we also
decided to place the interconnection network for this 8-core
3D CMP in this interface layer to keep the chip’s footprint
small.
Putting Everything Together. In brief, large memory
capacity will result in large tag areas which is constrained
by the available area in the interface layer. After testing the
tradeoffs between the memory capacity and tag area, we se-
lected a memory rank size of 96MB (1/8th of the total LLC
capacity). Each layer within a rank is divided into 4 6MB
subbanks for faster access time (vs. 24MB bank). But fur-
ther dividing the subbanks will increase the peripheral logic
area significantly in the interface layer. Unlike traditional
caches, we do not use SRAM-based tag implementation as
it is too large for our die area. Instead, we use logic-process
DRAM (LP-DRAM) for smaller area with good speed. With
the LLC cache organization we used, the LP-DRAM tag for
the 96MB cache memory occupies about 3.5mm? per core
in the interface layer.

Since there are 4 layers in each memory rank, and each
layer has 4 subbanks, we need to implement 16 sets of pe-

ripheral logic for each core in the interface layer. Using
CACTI-D, we estimated that these logic and the intercon-
nection in total occupies about 2.67mm?. The organization
of the peripheral logic is shown in the upper left corner of
Figure 1: the 4 sets of peripheral logic of one stack of sub-
banks are placed together, close to the corresponding tag
array. We use a dedicated 128-bit bus to connect them with
the interface to the crossbar. Note that this interface is
also vertically connected to the L2 cache bank in the core
layer. The 8-port crossbar in 45nm technology is less than
0.3mm?. Since the tag plus the peripheral circuits take up
about 6.17mm? per core, there is sufficient room for 4 128-
bit buses (i.e. 512 bits in total), and other necessary control
circuits in this layer.

2.2 Process Variations in the 3D DRAM Stack

Within each die, PV can be categorized into systematic
and random variations. Systematic variations are mostly in-
troduced by lithographic aberrations, which has major im-
pact on the effective gate length, Less. Also, such variations
present strong spatial correlations, meaning that the varia-
tions between two devices that are close to each other are
smaller than those that are far apart. Random variations are
unrepeatable. They are caused by random doping fluctua-
tion, which has impact on the threshold voltage, V;;,. Both
Less and Vi, have critical role in circuit performance. In
our PV modeling, we will focus only on the spatially corre-
lated Ly variations and use the results in HSPICE simula-
tion to determine DRAM access latencies. This is because:
1) circuit performance variations are dominated by spatial
Leyy variations in both normal and low supply voltage re-
gion [6]; 2) the relation between L.y and Vi, variations can
be characterized analytically [6,15,34], which is inherent in
HSPICE.

Modeling Systematic Gate Length Variations. We
used VARIUS [34], a PV modeling infrastructure based on
the statistic tool R [49] and its package geoR [32] to model
both WID and D2D variations. This model adopts a multi-
variate Normal (Gaussian) distribution with the well-studied
spherical structure [10] for spatial correlations. For a vari-
able, e.g., Lesys, that follows the Normal distribution with
parameter, mean (u), variance (o2), and density ¢, VARIUS
outputs its variation map. The intuition of p and o of WID

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4

Figure 3: Sample L.ss distribution maps for 4 DRAM cell layers of one chip.

Die 0
~—— Die 1

Probability

S

>
Le uo [T R Value
I€ 1 2

! WID
Figure 2: Illustration of WID and D2D variations
and their parameters.

N}
1

and D2D variations can be seen from Figure 2. The density
¢ is a parameter that determines the range of WID spatial
correlation. It is expressed as a fraction of a chip’s length in
one dimension in VARIUS. As the spatial correlation of two
devices decreases as their distance grows, ¢ is the distance
at which the correlation drops to zero. For example, ¢ = 0.5
means that the correlation range equals to half of the chip’s
side length. Hence one device is correlated to all the device
within that radius.

The values of u, o and ¢ are determined as follows. Since
DRAM cells are minimized for device density, we let p be
the minimum gate length for a given technology size. For
o, previous studies [5,6,15,21,34,38] used o/u ratio to de-
termine o. This ratio ranges from 3.2% [15] to 10% [6] for
different technology nodes. We choose our o/u to be 7%
for WID L.y; variation, similar to that in [21]. For D2D
variations, the difference between the p of each die (e.g., ©0
and pl in Figure 2) also follows the Normal distribution.
This distribution has the same mean as the nominal mini-
mum L.ss we use, but a different variance, o’. There is little
public domain information for o’. A 5% and 7% for o'/p
were reported in [21] and [5] respectively. We conservatively
take a 2% for o’ /p in the D2D variation model. The value
of ¢ is related to the die size. A large die tends to have
relatively small ¢. For example ¢ = 0.5 has been used for a
616mm? die [12] and a 340mm? die [38]. Since our die size
is relatively small, we choose ¢ = 1.

We repeatedly ran VARIUS to generate a large number
of maps. Each map corresponds to the Lss distribution
of one die. Each map has one million (1000x1000) sample
points. Both WID and D2D sample points follow Normal
distribution. We then randomly picked 40 maps, and ran-
domly grouped 4 maps together, representing the 4 DRAM
layers, to form 10 stacked chips. Figure 3 shows a sam-
ple Leysy distribution in the 4 DRAM cell layers of a chip.
The subbank floorplan of each layer is superimposed on the
map. Four neighboring subbanks of the same location in all

4 layers form a memory rank atop a core, as rank A and
B shown in the figure. The values of the sample points are
converted to different colors on the map. Dark color im-
plies small value, or short L.yy, and light color indicates the
opposite. We can clearly see from the maps that L.ss vari-
ations spread across all die, and among different die. Most
importantly, when WID and D2D variations are considered
together, not only do the subbanks in every layer present
L.ys variations, but also the subbanks in one vertical rank
have a range of L.y¢. For example, all layers of rank A have
relatively short Less. Therefore, rank A has relatively high
average speed. In contrast, rank B has long Less in Layer 1
and 3. So those two layers are fairly slow, while Layer 2 and
4 are faster. Such a difference gives us motivation to utilize
faster banks more frequently for better performance.
Modeling Memory Access Latency Variations. Af-
ter obtaining the L.sy distribution map, we divided each
die into 32 subbanks as shown in Figure 3. The latency
of each subbank is determined by the slowest cell in this
subbank, which corresponds to the longest L.s; of all the
sample points within the area of each subbank. We then
feed those L.ss numbers into HSPICE simulation to derive
subbank access latency.

We built and simulated the critical path of a DRAM sub-
bank. For the access transistor in a DRAM cell, we used a
long-channel, high V4, PTM [43,44] nMOS model with thick
gate oxide, which are mainly based on parameters in [39] and
the CACTI-D source code. The cell capacitor was chosen to
be 30fF [28,39], and wordline voltage is boosted to 2.7V [39].
The 7RC model was used as the long, very capacitive bit-
line, and we consider a 40mV bitline voltage swing to be a
reasonable sensing margin. In each HSPICE run, the cell
transistor was modified with a gate length that represents
one subbank, and the resulting latency was then used for
that subbank in the subsequent architectural simulations.
All HSPICE simulations were performed with a tempera-
ture of 90°C.

Modeling Leakage Variations. L.;; variations and the
induced V;j, variations also have impact on the leakage of the
circuits. When a DRAM subbank is particularly leaky, its
refresh period should be more frequent, which affects both
performance and energy. To quantify the leakage variations,
we also simulated the cell leakage with different Less values.
Due to the inverse proportional relation between L.;y and
leakage, we found the shortest L.s; within each subbank
as the most leaky device for HSPICE simulation. Then,
we assumed an inverse linear relationship between leakage
and refresh period, and scale the refresh period from a nor-
mal value of 64ms [39]. For example, if one subbank is two

times leakier than normal, its refresh period will be 64 / 2 =
32ms. In the subsequent architectural simulations, we used
subbank level refresh control in a burst refresh mode, mean-
ing that a refresh performs from the first line to the last line
continuously. A subbank is marked busy and cannot serve
any requests during this time.

Hardware-Awareness of PV. Since PV magnitude can
be detected only at the post-fabrication stage, it is neces-
sary for the hardware to detect such variations and store
it on-chip for PV-aware configurations. Tezzaron Corpo-
ration incorporates a continuous on-chip testing technology
which tests all tiny circuits of the entire memory chip at each
power-up [48]. Similar technique such as a built-in self-test
circuit that can test and record the retention time of each
individual cache line after fabrication was also used in pre-
vious study [21]. We therefore assume that the stacked chip
can be fully tested after fabrication and the tested results
can be stored on-chip for PV-tolerant configurations such as
one we propose in this paper.

We have discussed how we modeled PV in the DRAM
stack of the 3D chip we study. We remark that similar PV
also exists in the core layer and the interface layer. Our
goal in this paper is to reduce the average access time in
the LL.C. Therefore, it is additive with the optimizations at
the core level. The peripheral layer uses high performance
devices, and therefore account for a relatively small part
in the entire LLC access time. Therefore, we focus on the
latency variations, and the consequent energy results of the
DRAM cell layers in this paper, and leave the other factors
as future work.

3. NON-UNIFORM CACHE MANAGEMENT

In this section, we first present the performance analy-
sis for the 3D-stacked 5-layer DRAM-on-processor. Next,
we introduce our proposed cache management schemes per-
taining to the 3D architecture. Before discussing any quan-
titative results, we first describe our evaluation environment
and necessary settings.

3.1 Evaluation Settings

We used Virtutech Simics [50] to model the performance
of our 8-core 3D DRAM stacked processor. Major parame-
ters are detailed in Table 1. We extended the g-cache mod-
ule in Simics with PV features such as different bank access
times. In addition, as we will explain later, we modeled the
contention in cache subbank accesses as well as the cross-
bar interconnect for our PV-tolerant designs. Both L1 and
L2 are private, and LLC is shared. We used snoopy MESI
protocol in L2 to maintain the cache coherence. For the pri-
vate 1.2, a miss would trigger a snoop request to all L.2s, and
then waits for the response back. Such a coherence transac-
tion can take a long time. Fortunately, our LLC has large
capacity, and it is highly likely that the local L2 miss can
be satisfied in the LLC. Therefore, we parallelize these two
operations for performance benefit.

As we can see from Table 1, the nominal LLC subbank
latency is 15 cycles. However, the speed of a subbank is
determined by the slowest device in the subbank. Hence,
the subbank speed distribution has a larger mean than 15
cycles. We ran simulations on 10 modeled chips, randomly
generated using the methodology described before. Figure 4
shows the histogram of the subbank latency as the result of
PV, collected from all four memory layers of all 10 chips we

modeled. The results show that a majority of the subbanks
have latencies longer than 15 cycles, creating challenges to
PV-tolerant designs. The last subtlety is the latency model
for the interface layer. We charge 3 cycles for source-to-
destination traffic through the crossbar in an uncontended
network. Contention latencies will be further added during
the simulation. For tag, data bank, and row buffers that
are immediately next to the crossbar interface (refer to Fig-
ure 1), there is only 1 cycle delay on the wire. For others,
there are 2 cycle delays. These values are important source
of overhead in our proposed migration schemes.

14%
Ideal

i
i
i
i
'
i

8% !
i
]
:

4%

2% I I

0% - I lam_-
i

11 14 17 20 23 26 29

Subbank Access Latency (cycles)

Figure 4: DRAM subbank latency distribution as
the result of PV.

Percentage
@
=®

Benchmarks. We selected 5 multi-threaded workloads from
PARSEC [51] and 10 workloads from SPECCPU-2006. Those
workloads are memory intensive, and therefore, more sensi-

tive to process variations in LLC. All workloads were com-

piled with gce 4.1.0. For PARSEC workloads, we used sim-

larg as the input and simulated the code region of interest

from the beginning to the end. For SPECCPU-2006 work-

loads, we skipped the initialization phase, and simulated 2

billion instructions afterwards. The details of the workloads

are listed in Table 2. For multi-threaded workloads, we ap-

plied page coloring [8] technique to enhance data locality for

performance benefit. We ran the workloads twice, the first

time distinguishing private and shared pages and the sec-

ond time pinning private pages to their local LLC banks.

For single-threaded workloads, all data are located in the

memory rank atop the core.

3.2 Static PV-Tolerant LLC

We use two baselines as our basis for comparison. The first
one is an ideal chip that has no PV, i.e., a chip with uniform
LLC. This baseline gives us the ideal performance that we
would like to achieve in presence of PV. The second baseline
considers the impact of PV, and uses the slowest subbank’s
latency as the nominal LLC bank access latency. This base-
line obviously produces the worst performance. Figure 5
compares the performance of the two baselines, normalized
to the ideal one. The error lines show the performance range
of the 10 chips we modeled, and the bars show their aver-
age performance. In the “I13-worst” results, we did not use
the real slowest bank in the entire LLC as it is typically too
slow to make the comparison fair. In reality, cache or mem-
ories are typically built with redundancy, and faulty mem-
ory lines can be turned off and remapped to the redundant
memory lines. We also assume there is such redundancy
for PV purposes so that the slowest subbanks are disabled.
Hence, in our measurements, we first eliminated the 4 slow-
est cache lines in each subbank, then used the third slowest
subbank’s speed to produce the results. As we can see that

CPU

8 cores, 3GHz, 2-issue, in-order

Private L1 I/D

32KB/core, 8-way, 64B line, 2-cycle hit time

Private L2 256KB/core, 8-way, 64B line, 2-cycle tag lookup, 3-cycle data hit time
Shared LLC distributed 3D stacking, 4 data cell layers, 1 interface (peripheral) layer
Organization tag array: 4 subbanks per core

data array: 4 subbanks per core per layer
6MB tag array on the interface layer, 32-bit per tag entry

LLC Configurations

768MB, 48-way, 3-way per subbank 512B line, 5-cycle tag lookup, 15-cycle data hit time
2-cycle delay for tag and data subbank not immediate to the crossbar

Interconnect

8-port crossbar, 16B wide, bidirectional, 3-cycle end-to-end uncontended latency

Main Memory

16GB, 2 channels, 160-cycle for the critical block

Table 1: Baseline chip configurations without PV.

SPEC2006 | astar | bwaves | gcc | GemsFDTD Ibm leslie3d | libquantum | mecf | soplex | sphinx3
memory 46M 820M 45M 838M 407M 81M 36M 29M 92M 22M
L2 MPKI 5.4 10.2 6.8 18.3 23.2 16.8 33.8 69.3 24.6 12.7
PARSEC cannea facesim ferret streamcluster x264
memory 162M 210M 71M 16M 90M
L2 MPKI 21.0 4.8 3.1 8.7 2.2
instructions 1700M 28500M 38000M 35000M 24300M

Table 2: Simulated workloads. “memory” stands for memory footprint. “L2 MPKI” stands for L2 misses per

kilo-instructions. “instructions” stands for the number of instructions simulated. All SPEC2006 workloads

are run for 2 billion instructions.

the pessimistic baseline is 6~29%, with an average of 16%
worse than the ideal baseline. The performance degrada-
tion is seen more for the single-threaded workloads because
their L2 MPKIs are higher which indicates that their LLC
demands are higher.

Single-threaded Workload

Shared Memory Workload ! W 3-ideal; D13-worst

060

Normalized Speedup

P & & & S € & O & N & & ¢ S
& & &¥ N Y & > N & 2
,,0'\\ & o\"’ O & & ¢ 9 © & & ”OQ o« /@z
&< S N ¥ S KR &
S & N 4

Figure 5: Performance of the pessimistic baseline
normalized to the ideal baseline.

With PV-tolerant LLC designs, we expect that the per-
formance will win over the pessimistic baseline, but inferior
to the ideal baseline. Hence, our objective is to approach
the performance of the ideal baseline. The first PV-tolerant
design is the straight forward static NUCA design, much like
that in a 2D CMP. That is, every subbank has its own speed,
irrespective of the slowest subbank speed. Therefore, some
subbanks will indeed be faster than the nominal speed. How-
ever, one design complication is that the cache requests may
return out-of-order since each subbank has different access
latency. This may create contention in the interconnection
channel shared among multiple subbanks. In our design,
this is the dedicated bus that connects the 4 row buffers of
each column of subbanks to the TSV /crossbar port in the
interface layer (refer to Figure 1). The contention comes
from the vertically aligned 4 memory subbanks. We added
a local arbiter to arbitrate their requests for this bus. Fig-
ure 6 shows the performances of this scheme compared to
the two baselines. As we can see, all workloads immediately
benefit from a PV-tolerant design. The average slowdown
compared to the ideal baseline is now 6%.

M [3-ideal @I3-worst O bank-variation
Single-threaded Workload

Shared Memory Workload '

]

g

Nnrrgalized Speedup

g

Figure 6: Performance of the static PV-tolerant
LLC, normalized to the ideal baseline.

3.3 Dynamic PV-Tolerant LL.C

In static PV-tolerant design, data are statically mapped
to a subbank. The data in a slow subbank will always be
accessed with long latency. We can improve this by apply-
ing data migration, similar to the DNUCA design in a 2D
CMP [16]. The idea is to migrate data from slow subbanks
to fast subbanks. For example, if an LLC access hits in a
slow subbank, after the data is sent back to the core, it is
moved immediately to a fast subbank such that next time
the data can be fetched with lower latency. Note that the
tags are moved as well to ensure correct indexing. The ques-
tion is where to migrate the data, as there might be many
subbanks that are faster.

Bank Latency Based Migration Policy. An intuitive
migration scheme is to always move the data to the fastest
subbank. That is, all 16 subbanks in a memory rank are
sorted by their access latencies in ascending order from Bank-
0 to Bank-15. Once a cache line is accessed in a slow sub-
bank, it is migrated to the fastest subbank (Bank-0). The
victim cache line from Bank-i are evicted to Bank-(i+1),
0 < i < 15, as illustrated in Figure 7(a). However, this
scheme in fact degrades the performance on average, as can
be seen from the data series labeled “bank-migration” in Fig-
ure 8. The results show that it is even 7% worse than the
static PV-tolerant scheme. This is because a lot of con-
tention was created when all rest 15 subbanks move their

Bank-0

O
= emd
O oo 00

(a) Classic LRU (b) Mult Tier

OO |

O o04d
OO0

(c) Two-Tier

Columno | Columnl

08

0oo! «\ooo

(d) Intra- Column

Figure 7: Illustrations of different dynamic data migration policies.

data into Bank-0. All migration activities compete for the
free time of Bank-0, generating long wait time due to this
contention. What makes things worse is that Bank-0 is now
also highly demanded as all data are supposed to be located
there. Hence, every LLC access is first directed to Bank-0
then other subbanks, generating even more traffic to Bank-0.

WI3-ideal WI3-worst O bank-variation O bank-migration

Single-threaded Workload

Shared Memory Workload 3

°
@ 100 i
@

Figure 8: Performance of the latency-based migra-
tion policy, normalized to the ideal baseline.

Tiered Migration Policy. If we take another look at Fig-
ure 8, we find that some workloads such as facesim, ferret,
gcc, sphinx3 etc. did see improvements with the above mi-
gration policy. Some of them are already as good as the ideal
baseline. Those are the workloads that have less than ~10
L2 MPKI, as indicated in Table 2, meaning that their de-
mand on LLC is relatively low. This observation motivates
us to revise the migration scheme to offload the requests
from Bank-0 to maybe the second, third, etc. fastest sub-
banks. More formally, we divide the subbanks in one rank of
memory into several tiers according to their speed, and each
tier has several subbanks of similar speed. Migration is done
such that data is moved from a slow tier to the fastest tier,
and evictions go in the opposite direction. Within each tier,
cache lines are installed in a Round-Robin manner among
different banks. Therefore, the pressure originally on Bank-
0 is now evenly distributed into several subbanks, greatly
reducing the likelihood of subbank contention. This is illus-
trated in Figure 7(b).

Next, we study how to divide the subbanks into tiers. We
evaluate how many tiers are necessary, and what size of each
tier should be. We first start from a simple 2-tier design: a
fast tier and a slow tier. We vary the size of the fast tier
from 1 to 16, and leave the remaining subbanks to the slow
tier. For example, the latency based migration is simply a
2-tier scheme where the fast tier has only Bank-0, and all
the rest 15 subbanks are in the slow tier. We measured
the performance of all partitions and normalized them to
this configuration. Results are shown in Figure 9(a). As we
can see, there is a tradeoff between the tier size and perfor-

mance, as the initial size increase in the fast tier does help
to improve the performance for most benchmarks due to
load distribution. However, when the fast tier size is larger
than the slow tier, performance starts to decrease. This is
because when the fast tier is bigger, the average LLC ac-
cess time is also larger which in turn harm the performance.
There are also a few workloads, such as sphinx3 that have
nearly monotone decreasing performance. Those workloads
generally have small LLC demand and less contention in
Bank-0. Therefore, the smaller the fast tier, the lower the
LLC average access time, and the higher the performance.
Figure 9(b) summarizes Figure 9(a) using Geometric means
of all workloads. This curve clearly shows the best choices
for the fast tier: 3~6 fastest subbanks give the highest per-
formance. Moreover, we also tested the potential of having a
dynamic varying fast tier assuming that the best tier parti-
tion can be found dynamically. The Geometric mean of this
dynamic optimal value is well below 1% away from the static
partition of 3~6 subbanks. This implies that it is not nec-
essary to perform dynamic searching for the best partition
at runtime since static partition is sufficiently good.

Normalized Speedup

12 3 4 5 6 7 8 9 1011 12 13 14 15 16,

Number of Subbanks in First Tier ot
(a)
1.08
S 106 —— +~Geo-Mean
3
0 | S~
5 1.02 / T~
2 100 / T~
£ 098
S 0.96
So
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16

Number of Subbanks in First Tier

(b)
Figure 9: Performance variations (a) and summary
(b) for a 2-tier migration scheme.

Finally, we keep increasing the number of tiers to see if fur-
ther performance improvements can be obtained. Figure 10
compares the performance for 2-tier, 3-tier and 4-tier migra-
tion schemes. As we can see, there is no clear performance
benefit in increasing the tier count. Two-tier enabled migra-
tion scheme is adequate and the migration operation is also
simple. A cache line swap between the two tiers is enough

W 2-tier (4-12) W 3-tier (4-4-8) O 4-tier (4-4-4-4)

°

°

0.600

Figure 10: Sensitivity study of tier numbers.

to gain performance benefit. Our two-tier partition has 4
subbanks in the fast tier, which amount to 6 MB x4 x8ranks
=192MB memory space. This is fairly large to hold most
of our workload’s working sets. For workloads that are even
larger, it may be advantageous to have more tiers. In all the
studies next, we use a 2-tier (4-12) partitioned configuration.

The 2-tier migration scheme we developed achieves sig-
nificant performance improvements, as shown in Figure 11.
For all workloads except libquantum, the maximum perfor-
mances of the 10 test chips we generated surpass the ideal
baseline. The highest is seen for mcf which is 7% faster
than the ideal baseline. This is because the 2-tier migra-
tion scheme can fully utilize the fast subbanks such that the
effective LLC access latency is even shorter than the ideal
baseline. For the average performance of each workload (the
height of the bars), there are also 3 workloads: GemsFDTD,
bwaves, mcf, and sphinx3 that are faster than the ideal base-
line. The Geometric mean of all workloads achieves 99.55%
of the performance of the ideal baseline. Having a fast tier of
4 subbanks are particularly effective for workloads that have
high LLC requirement (or high L2 MPKI) such as canneal,
GemsFDTD, 1bm and mcf as their performances boost dramat-
ically from “bank-migration” to “bank-migration-2-tier” in
the figure.

Mi3-ideal WI3-worst B bank-variation [bank-migs 0 bank-migration-2-ti

Shared Memory Workload | Single-threaded Workload i

0 T +

Normalized Speedup

50

> PO S e & &
S HFHEEF Y LTSS TGS
A I & R S &
& @ © N & S R &
& & N ©

%,

Figure 11: Performance of the proposed 2-tier mi-
gration technique, normalized to the ideal baseline.

Energy Conservation: Intra-Column Two-Tier Mi-
gration. Having seen the great performance advantages of
the 2-tier migration scheme, we now turn into its energy
consumption as the migration activities are extra energy
overhead. First, let us understand how much migration ac-
tivities are introduced to the memory. This is reported as
the percentage of LLC accesses that trigger migrations in
Figure 12(a). Since our fast tier has 4 subbanks (192MB
for entire LLC), most workload’s working set can be fit into
this capacity. Hence, many workloads do not have notice-
able migration overhead — they are only for the cold start
stage. For the 6 workloads that have >1% migration ac-
tivity, we further study their LLC regular dynamic energy
consumption vs. migration energy. The results are in Fig-
ure 12(b). The data series labeled with “intra-column” will

O normal access energy W migration energy

7%
200%
'gS% 160%
< 5% .
T a% 0%
Q2 3% 80%
EZ% l I 40%
8 1% 0%
= o nl-TRiN-R
D& &S > O & D& S LR - R - - RN
CFEE e SO S 878" % "3"Eog
g @I TS COENOESIIREQNS £ £ g g g g
TS TS M g E B £ £ E

bwaves GemsFDTD Ibm leslie3d libquantum soplex

(a) (b)
Figure 12: (a) Percentage of migration activities.
(b) Energy comparison for 2-tier migration and
intra-column migration.

be discussed later. We can see that for 2-tier design, the
migration energy can be more than 80% of the regular ac-
cess energy for leslie3d. Hence, it is necessary to revise
our 2-tier migration scheme to lower this part.

To reduce the migration energy, we have observed that
a significant portion of the migration energy is consumed
on the wires in the interface layer connecting the four row
buffers and tag arrays (refer to Figure 1). Table 3 lists
the energy breakdown for a LLC access. As we can see,
the 0.325nJ, which is the wires in the interface layer is the
largest amount in the table. Since 3D memory design has
shorter interconnection wires due to stacking, any 2D wires
that cannot be eliminated become more pronounced. The
energy spent on the wires in the interface layer is due to the
movement of data between subbanks in different columns.
Hence, we revise our 2-tier migration scheme into an intra-
column migration scheme. Instead of migrating among dif-
ferent columns via the wires on the interface layer, we en-
force the migration to happen within each column. There
are still 2 tiers in the memory rank. The difference now is
that the fast tier is composed of the fastest subbank in each
column. A hit into a slow subbank will only move the data
to the fastest subbank in its own column. Hence, all migra-
tions happen only within each column of subbanks. This is
depicted in Figure 7(d).

L3 Energy Component Energy (nJ)
Data Subbank Read 0.065
Data Subbank Write 0.087
Subbank Wire (64B, one-way) | 0.325
Tag Read 0.052
Row Buffer Swap 0.230

Table 3: L3 Energy consumption component break-
down. Obtained using CACTI-D.

The intra-column migration technique saves significant en-
ergy, compared to the original 2-tier migration scheme. The
comparisons are shown in Figure 12(b). As we can see,
intra-column migration has nearly negligible migration en-
ergy overhead, which is more than ~20 times lower than
the 2-tier design for all workloads. What is more impor-
tant is that the intra-column migration, though it changed
the subbanks in the fast tier, was not hurt in performance.
This is shown in Figure 13. Both 2-tier migration schemes
are very close to each other for all workloads. The intra-
column migration has a slightly higher variance in speedup
than the 2-tier migration. The average of intra-column is
98.93% of the ideal baseline. They are better than the pes-
simistic baseline by 18%. Finally, we also measured the
energy-delay product for the entire chip using methodolo-
gies similar to [39] and compared them among different PV-

W [3-ideal
Shared Memory Workload

W 13-worst W bank-variation

Normalized Speedup

T
1
1
1
1
)
1
1
1
1
T
05 —1
1

canned! ¢ cesim (Setfrfeea‘mc\ustef X264 asta’ yyaves

[bank-migration

EEemsFOTP

[bank-migration-2-tier

Single-threaded Workload

O bank-migration-intra-column

tor \eS\'\?\%gquar\Nm ek goplex sphin3 Geo-mea"

Figure 13: Performance of the improved intra-column 2-tier migration technique, normalized to the ideal

baseline.
+
35 Shared Memory Workload 1

%%mmﬂm:m

e o aNes

Normalized System
Energy * Delay ” 2
N
o

v
canned ¢ cesit® ie“::;mﬂ\“s‘e‘ <264
S!

M |3-ideal MI3-worst @ bank-variation [bank-migration

%Cems?mo o \es\-\e\%\?q Lantur®

O bank-migration-2-tier [J bank-migration-intra-column
Single-threaded Workload

'
1
1
T
1
|
T
1
1
T
1
1
1

wct ople* gin® Geoe”

Figure 14: Energy-Delay product results.

tolerant schemes. The results are shown in Figure 14. Since
our proposed intra-column 2-tier migration scheme achieves
almost identical performance as the ideal baseline, and its
energy overhead is also negligible, it follows naturally that
the energy-delay® product is only 3% away from the ideal
baseline. They are however 42% better than the pessimistic
baseline. We therefore conclude that this is the best PV-
tolerant cache management scheme.

4. PRIOR ART

The concept of Non-uniform Cache Architecture (NUCA)
was proposed by Kim et al. [16] to handle the increasing
global wire delay. They study different cache line migration
policies, cache line mapping and tag searching techniques
for a single-core architecture. Chishti et al. [7] proposed
NuRapid, a NUCA design with decoupled tag array and
data array. Cache line can be relocated to a different data
array bank with an indirect pointer from the tage entry. In
multi-core architectures, Cho et al. [8] proposed a software
approach to place data close to its core. With a special
cache mapping scheme, cache line placement can be man-
aged through page coloring at the OS level.

There are also a number of recent works that are re-
lated to managing the non-uniformity of cache accesses in
3D chips [19], including those that utilize emerging memory
technologies such as Phase Change Memories and Magnetic
Memories [37,41]. However, the fundamental cache non-
uniformity of those works are still two-dimensional such that
they are managed within one layer. Migrating data verti-
cally did not benefit because vertical communication latency
was uniform (well below 1ns) due to the small die thickness.
However, as we can see from our analyses, such vertical data
migration is critical to performance with process variations.

5. CONCLUSION

We modeled PV in a 3D DRAM-stacked multicore chip.
With PV, the speed of DRAM subbanks has a wide range
of values due to both WID and D2D variations. Hence, it is
important to consider the impact of PV on the performance
in a 3D chip with DRAM stacks. Our evaluation indicates

that the performance of a 3D chip with PV can be degraded
by 16% if the speed of one of the slowest subbank is used as
the nominal subbank speed. We proposed a cache manage-
ment scheme based on data migration between tiers within a
column of subbanks. Our scheme can overcome PV in mem-
ories such that the resulting speed is only 0.45% away from
a chip with no PV. The energy overhead is also minimized.

6. REFERENCES

[1] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, K. Roy,
“A Process-Tolerant Cache Architecture for Improved Yield
in Nanoscale Technologies,” IEEE Transactions on Very
Large Scale Integrated Systems, vol. 13, pp. 27-38, 2005.

[2] A. Agarwal, B. C. Paul, S. Mukhopadhyay, K. Roy,
“Process Variation in Embedded Memories: Failure
Analysis and Variation Aware Architecture,” IEEE Journal
of Solid-State Circuits, 40(9), pp. 1804-1814, 2005.

[3] M. Agasthi, V. Venkatesan, R. Balasubramonian,

“Understanding the Impact of 3D Stacked Layouts on ILP,”

Journal of Instruction-Level Parallelism, Vol. 9, pp. 1-27,

2007.

B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L.

Jiang, G. Loh, D. McCaule, P. Morrow, D. Nelson, D.

Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen, C. Webb,

“Die Stacking (3D) Microarchitecture,” International

Symposium on Microarchitecture, pp. 469-479, 2006

[5] K. A. Bowman, S. G. Duvall, J. D. Meindl, “Impact of
Die-to-Die And Within-die Parameter Fluctuations on the
Maximum Clock Frequency Distribution for Gigascale
Integration,” IEEE Jounal of Solid-State Circuits, Vol. 37,
No. 2, pp. 183-190, 2002.

[6] Y. Cao, L. T. Clark, “Mapping Statistical Process

Variations Toward Circuit Performance Variability: An

Analytical Modeling Approach,” Design Automation

Conference, pp. 658-663, 2005.

Z. Chishti, M. Powell, T. N. Vijaykumar, “Distance

Associativity for High-Performance Energy-Efficient

Non-Uniform Cache Architectures,” International

Symposium on Microarchitecture, 2003

[8] S. Cho, L. Jin, “Managing Distributed, Shared L2 Caches
Through OS-Level Page Allocation,” International
Symposium on Microarchitecture, pp. 455-465, 2006.

[9] E. Chun, Z. Chishti, T. N. Vijaykumar, “Shapeshifter:
Dynamically Changing Pipeline Width and Speed to
Address Process Variations,” International Symposium on
Microarchitecture, pp. 411-422, 2008.

[4

[7

[10] N. Cressie, “Statistics for Spatial Data”, Wiley, 1993.
[11] A. Das, B. Ozisikyilmaz, S. Zademir, G. Memik, J.

Zambreno, A. Choudhary, “Evaluating the Effects of Cache

Redundancy on Profit,” International Symposium on
Microarchitecture, pp. 388-398, 2008.

[12] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, C.
Spanos, “Modeling Within-Die Spatial Correlation Effects
for Process-Design Co-Optimization,” International
Symposium on Quality Electronic Design, 2005.

[13] X. Fu, T. Li, J. Fortes, “NBTI Tolerant Microarchitecture

Design in the Presence of Process Variation,” International

Symposium on Microarchitecture, pp. 398-410, 2008.

[14] X. Fu, T. Li, J. Fortes, “Soft Error Vulnerability Aware
Process Variation Mitigation,” High-Performance
Computer Architecture, pp. 2009.

[15] S. Hebert, D. Marculescu, “Variation-Aware Dynamic
Voltage/Frequency Scaling,” High-Performance Computer
Architecture, pp. 2009.

[16] C. Kim, D. Burger, S. W. Keckler, “An Adaptive,
Non-uniform Cache Structure for Wire-Delay Dominated
On-Chip Caches,” International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 211-222, 2002.

[17] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T.
Mudge, S. Reinhardt, K. Flautner, “PicoServer: Using 3D

Stacking Technology to Enable a Compact Energy Efficient

Chip Multiprocessor,” International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 117-128, 2006.

[18] J. P. Kulkarni, K. Kim, S. P. Park, K. Roy, “Process
Variation Tolerant SRAM Array for Ultra Low Voltage
Applications,” Design Automation Conference, pp.
108-113, 2008.

[19] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanan,

M. Kandemir, “Design and Management of 3D Chip
Multiprocessors Using Network-in-Memory,” International
Symposium on Computer Architecture, pp. 130-141, 2006.

[20] X. Liang and D. Brooks, “Mitigating the Impact of Process

Variations on CPU Register File and Execution Units,”
International Symposium on Microarchitecture, pp.
504-514, 2006.

[21] X. Liang, R. Canal, G.-Y. Wei, D. Brooks, “Process
Variation Tolerant 3T1D-Based Cache Architectures,,”
International Symposium on Microarchitecture, pp. 15-26,
2007.

[22] X. Liang, G.-Y. Wei, D. Brooks, “ReVIVaL: A
Variation-Tolerant Architecture Using Voltage
Interpolation and Variable Latency,” International
Symposium on Computer Architecture, pp. 191-202, 2008.

[23] C.C. Liu, I. Ganusov, M. Burtscher, S. Tiwari, “Bridging
the Processor-Memory Performance Gap with 3D IC
Technology,” IEEFE Design and Test of Computers, 22(6),
pp- 556-564, 2005.

[24] G. Loh, “3D-Stacked Memory Architecture for Multi-Core
Processors,” International Symposium on Computer
Architecture, pp. 453-464, 2008.

[25] G. L. Loi, B. Agarwal, N. Srivastava, S. Lin, T. Sherwood,
“A Thermally-Aware Performance Analysis of Vertically
Integrated (3D) Processor-Memory Hierarchy,” Design
Automation Conference, pp. 991-996, 2006.

[26] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R.
Balasubramonian, R. Iyer, S. Makineni, D. Newell,
“Optimizing communication and capacity in a 3D stacked
reconfigurable cache hierarchy,” International Symposium
on High Performance Computer Architecture, pp. 262-274,
2009.

[27] R. E. Maatick, S. E. Schuster, “Logic-based eDRAM:
origins and rationale for use,” IBM Journal of Research
and Development, pp. 145-165, 2005.

[28] W.Mueller, et al., “Challenges for the DRAM Cell Scaling
to 40nm” IEEE International Electron Devices Meeting, 4
pages, Dec 2005

[29] S. R. Nassif, “Modeling and Forecasting of Manufacturing

(30]

(31]

(32]

(33]

34]

(35]

(36]

37)

(38]

(39]

[40]

[41]

42]

(43]

f44]
[45]
[46]
[47]
48]
[49]

[50]
[51]

Variations,” Asia and South Pacific Design Automation
Conference, pp. 145-149, 2001.

S. Ozdemir, D. Sinha, G. Memik, J. Adams, H. Zhou,
“Yield-Aware Cache Architectures,” International
Symposium on Microarchitecture, pp. 15-25, 2006.

K. Puttaswamy, G. H. Loh, “Thermal Herding:
Microarchitecture Techniques for Controlling Hotspots in
High-Performance 3D Integrated Processors,” International
Symposium on High Performance Computer Architecture,
pp. 193-204, 2007.

P. Ribeiro Jr., P. Diggle, “geoR: A Package for
Geostatistical Analysis,” R-NEWS, vol. 1, no. 2, 2001.

S. Sarangi, B. Greskamp, A. Tiwari, J. Torrellas, “EVAL:
Utilizing Processors with Variation-Induced Timing
Errors,” International Symposium on Microarchitecture,
pp. 423-434, 2008.

S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A.
Tiwari, J. Torrellas, “VARIUS: A Model of Process
Variation and Resulting Timing Errors for
Microarchitects,” IEEE Transactions on Semiconductor
Manufacturing, Vol. 21, No. 1, 2008.

J. Singh, J. Mathew, D.K. Pradhan, S.P. Mohanty, “Failure
Analysis for Ultra Low Power Nano-CMOS SRAM Under
Process Variations,” International SOC Conference, pp.
251-254, 2008

A. Srivastava, D. Sylvester, and D. Blaauw, “Statistical
Analysis and Optimization for VLSI: Timing and Power,”
New York Springer, 2005

G. Sun, X. Dong, Y. Xie, J. Li, Y. Chen, “A Novel
Architecture of the 3D Stacked MRAM L2 Cache for
CMPs,” International Symposium on High Performance
Computer Architecture, pp. 239-249, 2009.

R. Teodorescu, J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for Chip
Multiprocessors,” International Symposium on Computer
Architecture, pp. 363-374, 2008.

S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman,
N. P. Jouppi, “A Comprehensive Memory Modeling Tool
and its Application to the Design and Analysis of Future
Memory Hierarchies,” International Symposium on
Computer Architecture, pp. 51-62, 2008.

A. Tiwari, S. R. Sarangi, J. Torellas, “ReCycle: Pipeline
Adaptation to Tolerate Process Variation,” International
Symposium on Computer Architecture, pp. 323-334, 2007.
X. Wu, Y. Xie, J. Li, L. Zhang, E. Speight, R. Rajamony,
“Hybrid Cache Architecture with Disparate Memory
Technologies,” International Symposium on Computer
Architecture, 2009.

S. Lee, C. Choi, J. Kong, W. Lee, J. Yoo, “An Efficient
Statistical Analysis Methodology and Its Application to
High-density DRAMs,” International Conference on
Computer-Aided Design, pp. 678-683, 1997

W. Zhao, Y. Cao, “New Generation of Predictive
Technology Model for Sub-45nm Early Design
Exploration,” IEEE Transactions on Electron Devices, Vol.
53, No. 11, pp. 2816-2823, 2006.

Arizona State University, “Predictive Technology Model
(PTM),” http://www.eas.asu.edu/~ptm/

UltraSPARC T2 Processor,
http://www.sun.com/processors/UltraSPARC-T2/
Tezzaron Semiconductors, FaStack Memory,
http://www.tezzaron.com/memory/FaStack_memory.html
Tezzaron Semiconductors, 3D Stacked DRAM,
http://www.tezzaron.com/memory/Overview_3D_DRAM.htm
Tezzaron Semiconductors, Bi-STAR Technology,
http://www.tezzaron.com/technology/Bi STAR.htm

R Development Core Team, “R: A Language and
Environment for Statistical Computing,” R Foundation for
Statistical Computing, http://www.R-project.org, 2006.
Virtutech Simics, http://www.virtutech.com

The PARSEC Benchmark Suite,
http://parsec.cs.princeton.edu

