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Abstract—As the power density increases exponentially, the
runtime regulation of operating temperature by dynamic thermal
management (DTM) becomes necessary. This paper proposes two
novel approaches to the thermal analysis at the chip architecture
level for efficient DTM. The first method, i.e., thermal moment
matching with spectrum analysis, is based on observations that
the power consumption of architecture-level modules in micro-
processors running typical workloads presents a strong nature
of periodicity. Such a feature can be exploited by fast spectrum
analysis in the frequency domain for computing steady-state re-
sponse. The second method, i.e., thermal moment matching based
on piecewise constant power inputs, is based on the observation
that the average power consumption of architecture-level mod-
ules in microprocessors running typical workloads determines
the trend of temperature variations. As a result, using piecewise
constant average power inputs can further speed up the thermal
analysis. To obtain transient temperature changes due to the
initial condition and constant/average power inputs, numerically
stable moment matching methods with enhanced pole searching
are carried out to speed up online temperature tracking with
high accuracy and low overhead. The resulting thermal analysis
algorithm has a linear time complexity in runtime setting when
the average power inputs are applied. Experimental results show
that the resulting thermal analysis algorithms lead to 10×–100×
speedup over the traditional integration-based transient analysis
with small accuracy loss.

Index Terms—Dynamic thermal management (DTM), model
order reduction (MOR), moment matching, temperature tracking,
thermal analysis.

I. INTRODUCTION

A S THE current IC technology enters the nanometer
regime, extremely high package density and operating
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frequency will lead to a drastic increase of power density. The
exponential power density increase will in turn lead the average
chip temperature to rise rapidly [2]. Furthermore, local hot
spots, which have much higher power densities than the aver-
age, make the local temperature even higher.

Higher temperature has significant adverse impacts on chip
performance and reliability. Excessive on-chip temperature
leads to slower transistor speed, more leakage power consump-
tion, higher interconnect resistance, and reduced reliability. It
is believed that prompt real-time regulation of on-chip tem-
perature by dynamic thermal management (DTM) is required
for today’s high-performance microprocessor and embedded
systems [3], [21].

The basic idea of DTM is to dynamically reduce the tem-
perature of some hot units (spots) in a chip via a suite of tech-
niques such as activity migration, local toggling, and dynamic
voltage/frequency scaling [3], [21]. Architecture-level thermal
behavior cannot be seen at circuit or gate level at design time
since different workloads generate different thermal profiles.
Performing DTM at the architecture level is advantageous in
that it can capture the runtime behavior of the program and
quickly adapt to different features within or across different
programs. Further, recent studies show that architecture-level
thermal management at small performance degradation cost can
significantly reduce the packaging costs typically designed for
worst cases [9], [21], [22].

One of the most critical aspects of thermal modeling and
simulation for DTM is to efficiently capture the temperature
changes due to variations of the power consumption caused by
the runtime variation of an application or the differences across
different applications at the chip architecture level. DTM per-
formed at runtime requires accurate real-time sensing of tem-
perature for each functional block. Previous research relies on
a thermal diode-based sensor for online temperature tracking,
which renders imprecision, delay, and space overhead for hard-
ware implementation [3], [8], [11]. These sensor noises could
significantly degrade DTM performance due to the conservative
triggering of DTM [21]. One viable alternative solution to this
problem is to use fast on-chip thermal estimation technique
in software form to complement or even replace the thermal
sensors for effective DTM application.

In this paper, we propose fast transient thermal simulation
algorithms at the architecture level for fast dynamic monitoring
and thermal management. We present two algorithms for differ-
ent application requirements. The first algorithm, i.e., thermal
moment matching with spectrum analysis (TMMSpectrum), is
suitable for short time and more accurate temperature tracking
with strong periodic power inputs. The second algorithm, i.e.,
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thermal moment matching based on piecewise constant power
inputs (TMMPWC), is more efficient for long time and online
temperature estimation for general power inputs. In the runtime
setting, the TMMPWC method can achieve linear time com-
plexity, which makes it very suitable for online thermal estima-
tions. The two methods are mainly different in how the power
inputs are modeled and handled. Experimental results show
that the resulting thermal analysis algorithms lead to at least
10×–100× speedup over traditional integration-based transient
analysis with small accuracy loss [21], [22].

The remainder of this paper is organized as follows:
Section II reviews existing thermal analysis algorithms, es-
pecially those at the architecture level. Then, we present the
rationale behind the new thermal analysis methods. Section III
briefly mentions the architecture thermal modeling in [22]
and our modification of the architecture as opposed to [22].
In Section IV, we first describe basic computation steps in
the proposed methods. Then, we present the two proposed
thermal analysis methods, i.e., TMMSpectrum and TMMPWC.
Section V shows how the proposed method can be applied to
on-chip DTM. Section VI presents the theoretical time com-
plexity analysis. The experimental results are summarized and
compared to a SPICE-like simulator in Section VII to validate
our method. The conclusion and future work are presented in
Section VIII.

II. THERMAL ANALYSIS ALGORITHM REVIEWS AND

RATIONALES FOR THE NEW ALGORITHMS

Many previous research works have been concentrated on
thermal modeling and simulation at the circuit or gate level [5].
Due to the large volume of thermal components and power
sources at full circuit or gate level, different schemes were pro-
posed to increase the efficiency of thermal circuit simulation.
Those schemes can be roughly classified into two categories.
The first type of method is based on the discretization on differ-
ential operators (finite-difference method) or the field quality
(finite-element method). Examples are [24] and [25], where
the entire chip is discretized, and the heat transfer equation
in partial differential form is solved by finite-difference or
finite-element method. The main drawback of those methods
is the huge size of the resulting thermal circuits due to volume
meshing. Different techniques were proposed to solve the ex-
tremely large thermal circuit, such as alternating direction im-
plicit (ADI) in [25] and model order reduction (MOR) in [24].
The second type of method is based on the Green function
method [23], [26], which provides a faster yet less accurate
thermal simulation than the above method due to the simplified
two-dimensional (2-D) modeling of the thermal problem.

Although many efficient algorithms have been proposed for
circuit or gate level thermal analysis, less attention has been
paid to thermal modeling and simulation at the chip architecture
level. Architecture-level thermal behavior cannot be seen at
circuit or gate level at design time since different workloads
generate different thermal profiles. Performing DTM at the
architecture level is advantageous in that it can capture the run-
time behavior of the program and quickly adapt to different fea-
tures within or across different programs. Further, recent studies

Fig. 1. Power trace of an integer register under Lucas benchmark.

show that architecture-level thermal management at small per-
formance degradation cost can significantly reduce the pack-
aging costs typically designed for worst cases [9], [21], [22].
An architecture-level thermal modeling and simulation tool
called HotSpot [21] was developed to exploit and study dif-
ferent DTM techniques in regulating microprocessor operating
temperature for representative benchmark programs. HotSpot
provides an accurate architecture-level thermal modeling based
on equivalent thermal circuits of thermal resistances and ca-
pacitances that correspond to microarchitecture blocks and
essential aspects of packaging. Component-wise temperatures
are derived from the power consumptions generated by power
simulations.

However, the efficiency of the HotSpot method for evaluating
different DTM techniques depends on the execution time of
transient thermal simulation throughout the program execution.
HotSpot models the thermal behaviors based on the equivalent
thermal circuit, which consists of thermal resistors and capaci-
tors. It uses conventional integration-based transient simulation
conducted at each execution interval in order to get the whole
temperature profile. When a program is loaded into HotSpot,
its power consumption is first obtained at regular intervals.
Then, temperature at every interval is calculated by taking the
temperature at the last interval and the power values at the
past few intervals. To obtain the temperature at a certain run-
ning point of the program, all the previous temperature points
should be generated since every point depends on its previous
points. For a modern benchmark program that has tens to
hundreds of billions of instructions, this method is not suitable
for runtime temperature monitoring since it will bring signif-
icant performance and thermal overhead as studied in [11].
In other words, traditional integration-based numerical tech-
niques are not suitable for fast runtime thermal estimation.

Our first thermal analysis method, i.e., TMMSpectrum, is
inspired by recent discoveries in the runtime behavior of pro-
grams over long periods of time. It has been shown that most
program behavior is not random and actually presents strong
periodic patterns due to the existence of loops or “phases”
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[18]–[20]. Many programs execute as a series of “phases” that
characterize certain program behavior at different times. Each
phase may be very different from the others while having a
fairly homogeneous and periodic behavior within itself. This
also reflects the periodic nature of each computation unit’s
output power consumption. Fig. 1 shows a snapshot of a typical
power trace of an integer register running under program
Lucas over 14 time periods in SPEC CPU 2000 suite [1].
Each period contains about 20 power values collected over
0.2 million instruction intervals. This trace was obtained from
simulating a 3-GHz processor, and thus, each period translates
to ∼0.06 ms, and the entire trace represent ∼0.84 ms of pro-
gram execution. As we can see, there exists very strong period-
icity even in this short amount of time.

TMMSpectrum exploits such periodic power traces of many
hot modules at the architecture level to speed up transient
thermal simulation. For instance, the integer register file is
typically the hottest module for most benchmarks [22]. Our
proposed new algorithm is based on the fact that the transient
behavior of the linear thermal system is the sum of the zero-
input natural response and zero-state forced response. We ap-
plied two efficient algorithms to compute the two responses.
1) For periodic power trace input, frequency domain spectrum
analysis is performed to calculate the steady-state response.
2) For transient behaviors of temperature, moment matching
technique is used with consideration of the initial states and the
dc input values computed in the first step. Since the analysis is
performed in pure frequency domain, and the resulting system
transient response is in an analytical closed-form expression in
terms of time, runtime has been improved significantly.

To further improve the accuracy of our temperature simu-
lation results over a long time for general power inputs, we
propose the second fast thermal simulation algorithm, i.e.,
TMMPWC, which is more suitable for online thermal tracking.
The method is based on the observation that the average power
in a certain amount of time determines the trend of temperature
variations. This is especially true for power inputs with very
large dc components and smaller high-frequency harmonics as
we see in typical power inputs of hot modules. As a result,
we can partition the simulation intervals into several intervals
(pieces), and each interval is simulated sequentially based on its
start and end times. By selecting appropriate interval lengths,
we can capture the dc component change of the power trace
over a long time without much overhead. Since the poles of
the thermal circuits can be precomputed offline or at the initial
stage, only the changing moments are computed online in the
runtime, which leads to linear-time thermal analysis method in
the online setting.

III. ARCHITECTURE-LEVEL THERMAL MODELING

Generally speaking, the heat transfer phenomenon is gov-
erned by the differential equation [5]

ρCp
∂T (�r, t)

∂t
= ∇ · [κ(�r, T ) · ∇T (�r, t)] + g(�r, t) (1)

where T (in Kelvin) is the temperature, ρ (in kilograms per cu-
bic meter) is the density of the material, Cp (in joules per cubic

Fig. 2. Modern chip packaging structure and equivalent RC circuit modeling.

meter kelvin) is the specific heat, κ (in watts per meter kelvin)
is the thermal conductivity, and g (in watts per cubic meter) is
the heat energy generation rate. The heat flow described by this
differential equation has the same format as that for electrical
current, and there is a well-known duality between them. The
heat flow passing through a thermal resistor is equivalent to the
electrical current, and the temperature difference corresponds
to the voltage difference. There is also the thermal-equivalent
capacitance through which heat is absorbed. Based on these
observations, an equivalent thermal RC circuit will be derived
and solved in dealing with thermal issues.

In circuit-level thermal RC circuit modeling, volume mesh-
ing is used to discretize the entire circuit structure, and the
finite-difference or finite-element method is used to discretize
(1). The resulting RC circuit is typically huge. At the ar-
chitecture level, however, due to the limited components at
floor plan and unknown details of physical implementation,
the corresponding RC model is compact, and the accurate
extraction of thermal resistance and capacitance is critical to
the application of thermal analysis.

In this paper, we follow the thermal modeling method at the
architectural level as in [9], where a fairly accurate equivalent
RC model, which is verified by other commercial tools, is
developed from the floor plan information. For a modern chip
with ceramic ball grid array (CBGA) packaging, heat sinks,
and cooling systems, as shown in Fig. 2, there exists two main
heat conduction paths where the heat generated by the active
silicon die area can flow through either the convective ambient
air or the printed circuit board. The primary RC circuit lies in
the silicon die area, where floor plan information is provided to
obtain the equivalent thermal resistance and capacitance. The
floor plan example we used in this paper is depicted in Fig. 3.
The difference between our floor plan model and the one in
[22] is that we divide some critical computing components,
such as integer register (IntReg) and floating point register
(FPReg), into more detailed pieces so that a more accurate
temperature variation could be obtained in these temperature-
critical components used during DTM. As shown in Fig. 3, the
thermal resistance between two adjacent modules is determined
by the common border length shared by them. Spreading/
constriction resistances are also considered as in [12]. Each
unit has a thermal capacitance to the thermal ground, which
is determined by the individual unit’s area, and a scaling
factor is needed to bridge the gap between this single-lumped
capacitance and a distributed one. Besides the active die area,
there are two additional heat spreader and heat sink layers that
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Fig. 3. Modified architecture of Compaq Alpha 21364.

lie underneath it. More component units are developed in the
model corresponding to these two layers but without active
power sources for each component as that in the active die area.

Finally, in modeling the package to air interface, an equiv-
alent convection resistance Rconvection is assigned, and a sus-
tained power source is attached between the thermal ground
(temperature of ambient air) and the package bottom. Calibra-
tion of this resulting model parameter is done as in [22] to
provide convergent results as compared to other commercial
tools as well as a good distribution of benchmark behaviors
in the final experimental results. The thermal circuit netlist is
stamped into matrix representation and processed in the circuit
simulation phase discussed in Section IV.

IV. NEW ALGORITHM FOR FAST TRANSIENT

THERMAL SIMULATION

In this section, we first present the preliminary algorithm
in Section IV-A. Then, we present the basic steps used in the
two methods in Sections IV-B–IV-D. After this, we present the
outlines of TMMSpectrum and TMMPWC in Sections IV-E
and IV-F, respectively.

A. Preliminary Algorithm

For a general dynamic system

ẋ = Ax + Bu (2)

where A is the system matrix, and B is the input selection
matrix. x and u are the state variable and input vectors. The
complete response is the sum of the zero-input response and
the zero-state response starting from time t0, i.e.,

x(t) = eA(t−t0)x0 +

t∫
t0

eA(t−τ)Bu(τ) dτ. (3)

The first term on the right-hand side is the zero-input response
due to the initial condition, and the second term on the right-

Fig. 4. Power spectrum of an integer register file in Lucas program.

hand side is the zero-state response due to input sources
u(t) only.

Our spectrum analysis of the typical power trace of many
architecture modules shows that most of the energy in the power
trace concentrates on the dc, as shown in Fig. 4 (y-axis is plotted
in logarithm scale). As a result, we partition the power trace
u(t) into two parts u1 and u2(t). u1 is the dc component of
the power input, and u2(t) is the periodic component of the
power input, where

u2(t + T) = u2(t) (4)

and T is the time of the period in power inputs. We stress
here that the practice power traces are not exact periodic over a
long time. But typically in a given phase (short time interval),
changes between different periods are so small that approxi-
mating them as periodic inputs will not cause significant errors.
As a result, (3) can be written as

x(t)=eA(t−t0)x0+

t∫
t0

eA(t−τ) dτ Bu1+

t∫
t0

eA(t−τ)Bu2(τ) dτ.

(5)

Now the first two terms on the right-hand side are only
functions of the initial condition and the dc inputs of the power
trace. The third response of the circuit is stimulated by periodic
power inputs.

The main idea of this paper is to efficiently compute the
first two responses by using the moment matching method and
the third periodic response by using the fast spectrum analysis
method in frequency domain to exploit the periodic patterns
of power inputs. In the next two subsections, we present how
the first two items are computed using the improved moment
matching method.

One way to improve the simulation efficiency is to perform
MOR on the thermal circuits and simulate the circuits using
reduced models. However, the projection-based MOR method
is not suitable for circuits with many input and outputs like
thermal and power grid circuits. One reason is that MOR needs
to compute the transfer functions between all the terminals. The
number of transfer functions is n2, where n is the number of
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terminals. In other words, we need to compute n moment series
at each node.

For our problem, we only need to compute one moment
series (due to the initial conditions at all the nodes) in each node
as we do not need to compute all transfer functions (or admit-
tances in the reduced admittance matrix). Also, to overcome
the numerical issue of the direct moment match method, a
subspace projection method is used to compute the poles, which
is to be discussed in Section IV-C. But we can do this by
computing one transfer function as poles are shared by all
the transfer functions. Therefore, the moment information is
sufficient for the pole computation in the projection method.

B. Moment Matching Considering Initial Condition
and DC Inputs

For equivalent thermal circuits with thermal resistors and
capacitors and power trace inputs, we use can use the modified
nodal analysis to formulate the thermal circuit

Gx + Cẋ = Bu1. (6)

Here, we only consider the dc component of the power trace
u1(t). C and G are capacitive and conductive circuit matrices,
x is the vector of node temperature, u is the vector of inde-
pendent power sources, and B is the input selection matrix. In
frequency domain, the Laplace transformation of the state (6)
can be rewritten as

GX(s) + sCX(s) − CX0 =
1
s
Bu1 (7)

where X0 is the initial condition at t = 0.
In the traditional asymptotic waveform evaluation (AWE)-

based moment matching method [16], all transfer functions (the
admittances in the reduced admittance matrices) between des-
ignated sources or ports are computed. As a result, n moment
series have to be computed for each node for n input sources as
each source stimulates a moment vector at every other node. In
our problem, we only compute one moment series at each node
as we only consider the response from the initial conditions
and constant dc power inputs at all the nodes. As a result, the
computation cost of the proposed method is not related to the
number of sources.

Specifically, let X̃(s) = sX(s). Then, the above equation
becomes

GX̃(s) + sCX̃(s) = sCX0 + Bu1. (8)

We then expand X̃(s) using Taylor’s series at s = 0 to have

G(m0 + m1s + m2s2 + · · ·)
+ sC(m0 + m1s + m2s2 + · · ·) = sCX0 + Bu1. (9)

We then obtain the recursive moment computation
formula as

m0 =G−1Bu1

m1 = − G−1C(m0 − X0)
m2 = − G−1Cm1

...
m2q = − G−1Cm2q−1. (10)

After all the moments are computed, the response at each
node can be written as

X(s)=
1
s
m0 + m1 + sm2 + s2m3 + · · · + s2q−1m2q + · · · .

(11)

The first term on the right-hand side is a step response in time
domain, and the rest of the moments are then used to find
the rational approximation via Padé approximation. In order to
find a qth-order Padé approximation, the first 2q moments are
needed. Then, we obtain 2q moment matching equations of the
response at node l, i.e.,

−(k1 + k2 + · · · + kq)=m0 − x0

−
(
k1

p1
+

k2

p2
+ · · · + kq

pq

)
=m1

...

−
(

k1

p2q−1
1

+
k2

p2q−1
2

+ · · · + kq

p2q−1
q

)
=m2q−1 (12)

where pi and ki are the ith pole and residue in the partial
fraction form of the response at node l

xl(s) =
1
s
m0 +

k1

s− p1
+

k2

s− p2
+ · · · . (13)

The classic AWE method [16] computes the poles and
residues directly from the moments at each node. Specifically,
AWE first computes the q poles by writing xl(s) into the
polynomial form

xl(s) =
1
s
m0 +

aq−1s
q−1 + · · · + a1s + a0

bqsq + · · · + b1s + 1

and then equaling it with xl(s) in moment form

xl(s) =
1
s
m0 + m1 + m2s + · · · + m2qs

2q−1.

Then, we can obtain q equations to solve for the q coefficients
b1, . . . , bq of the qth-order denominator polynomial. Once we
know the denominator polynomial, its q roots are the poles
p1, . . . , pq and are found by any rooting finding numerical
method. Once the q poles are known, it uses (12) (using only q
equations) to solve for the q residues. We repeat the process to
compute the residues and poles for all other nodes as we obtain
the moments at all the nodes in (10). However, the AWE method
suffers numerical problems as high-order moments numerically
lose the large pole information very quickly as shown in (12),
where moments are an inverse power function of poles.

Instead, we propose a more numerical stable method to com-
pute the poles, which is based on the subspace projection-based
method shown in next subsection. After the poles are computed,
all the residues ki are still computed using q equations from
(12). The time-domain responses are trivially obtained by tak-
ing inverse Laplace transformation of xl(s). Note also that since
the transient responses start with an initial condition, the initial
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conditions need to be explicitly enforced as shown in the first
equation in (12).

Since most of the power energy is in the dc inputs, the
response computed by moment matching can be close to the ex-
act response, and the spectrum analysis solution typically adds
small transient changes in the node temperature as observed by
our experiments.

C. Numerically Stable Estimation of Poles by the
Projection-Based Model Reduction

The traditional moment matching method [17] may produce
unreliable poles (positive poles) when computing (13) from
(11) due to numerical problems. A better way of finding poles
is by projection-based MOR, where moments are orthonormal-
ized and are used to build a projection matrix. The projection
matrix is then used to reduce the original circuit matrix by
congruence transformation, which can ensure that the reduced
system is passive (thus stable) [6]. Also, by using this method,
we only require q moments to find q poles.

Specifically, we obtain the first q moment vectors through
(10). Then, we form the N × q matrix, where each moment
vector is a column, i.e.,

M = [m0,m1, . . . ,mq−1]N×q (14)

where q � N , and N is the number of temperature variables
(nodes) in the thermal circuit and also the dimension of the
moment vectors. Then, we orthonormalize M into an N × q
projection matrix V such that columns in V are mutually
orthogonal, i.e., vT

i vj = δij , i �= j. Such an orthogonalization
process can be easily carried out by using the Gram–Schmidt
method or other numerically stable orthogonalization methods
[7]. Once we obtain the projection matrix V , the original
circuit matrix G and C in (6) can be reduced to two q × q
order reduced matrices by congruence transformation, i.e.,

Ĝ = V T GV, Ĉ = V T CV. (15)

After this reduction process, the eigenvalues of matrix Ĝ−1Ĉ
will be related to the dominant poles we are looking for as

pi = − 1
λi

(16)

where pi and λi are the ith pole and eigenvalue. This can be
easily obtained by performing the eigen-decomposition of
Ĝ−1Ĉ. Once all the poles are computed, we then compute the
residues at node x using (12).

We note that the orthonormalization process can also be
carried out by more numerically stable methods like Arnoldi
method with modified Gram–Schmidt and double orthog-
onalization Lanczos method with modified Gram–Schmidt
to further improve the numerical stability of the proposed
method [4], [7].

The proposed method guarantees stability of the responses
as all the poles computed are stable pole (less than zero in their
real part) [10], [15] due to the nature of congruence transfor-
mation and the modified nodal analysis (MNA) formulation of
the original thermal circuit matrices.

D. Spectrum Analysis in Frequency Domain

In this subsection, we discuss the spectrum analysis method
for periodic zero-state steady response of the thermal circuits
under periodic input power traces. The basic idea is to transform
the input signals into frequency domains via discrete Fourier
transformation (DFT) and then compute the responses of dom-
inant Fourier coefficients or harmonics. The resulting response
Fourier coefficients are then transformed back to time domain
to obtain the steady-state time responses.

In DFT, if we sample k points in the time domain, we
have k harmonics in the frequency domain. Then, we solve for
responses of each harmonics on the thermal circuits as

A(ω1)X(ω1) =P(ω1)

A(ω2)X(ω2) =P(ω2)

...

A(ωk)X(ωk) =P(ωk) (17)

where ωi, i = 1, . . . , k, are the harmonic frequencies, A(ω)
is the MNA matrix stamped with these thermal elements at
frequency ω, X(ω) is the temperature vector at each component
at frequency ω, and P(ω) is the computed harmonics of the
power input vector from DFT.

By this transformation, the computational cost can be re-
duced significantly especially for the long cycle simulation.
The reason is that we only compute the steady state using one
period, and the number of MNA equations depends on only the
number of sampling points. If faster simulation is required, we
can reduce the sampling frequency to speed up the calculation
at the cost of more accuracy loss. But at the same time, we make
sure that the sampling rate should satisfy Shannon’s sampling
theorem. Finally, we convert the frequency response to time-
domain responses by inverse DFT.

Note that the final steady-state temperature will be the tem-
perature we computed using spectrum analysis and environ-
mental temperature, which is treated as the ground voltage in
our equivalent thermal circuits.

E. TMMSpectrum Method

In this section, we present the flow of the TMMSpectrum
method.

TMMSpectrum Algorithm
1. Compute the poles (using the steps in Section IV-C)
and residues based on the moment matching method in
Section IV-B.
2. Compute the steady response from periodic power
inputs in Section IV-D.

The actual temperature response is the sum of the zero-input
response (stage 1) and the zero-state response (stage 2).

Since the solution from the spectrum analysis in frequency
domain is the steady-state solution, which means it will happen
at infinity time when system response becomes stable, it is less
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accurate for response at t = 0. But the difference is very small
as the energy in the periodic inputs are typically very small
compared to the dc components. This has been observed and
verified by our experimental results.

F. TMMPWC Method

In this section, we present the flow of the TMMSpectrum
method.

TMMPWC Algorithm
1. Partition the time interval into many smaller intervals
based on the input power patterns.
2. Compute the average power inputs for each interval.
3. Compute the poles (using step in Section IV-C) and
residues based on the moment matching method in
Section IV-B for each time interval. The ending responses
of one interval will be the initial conditions for the next
interval.

The final transient results are the simulated responses from all
intervals for the whole time interval.

In the runtime setting, the pole computation step in stage 3
can be precomputed in the initial stages, and the equations
(12) used to solve residues can also be LU decomposed in the
initial stage. The resulting TMMPWC will be linear in terms of
number nodes, as shown Section VI.

V. APPLICATION TO DTM

Our techniques have great benefits to performing DTM at
the architecture level. For instance, given an initial thermal
setting and the fact that the phase of the program is periodic,
our technique can predict if the current phase will reach a
critical temperature, and if yes, how soon it will happen. Thus,
before such a critical temperature is reached, effective DTMs
such as dynamic voltage/frequency scaling, local toggling, and
activity migration can be carried to cool down the soon-to-be
hot modules, preventing them from entering the temperature
critical stage. This can be easily computed using our proposed
algorithms. In some situations, the dc-component-stripped pe-
riodic power trace only adds small distributions on the general
transients of the temperature. The moment matching responses
can be used to give fairly accurate time estimation.

Another important question of DTM is whether a program
having a long time of periodic behavior will ever reach a
critical temperature, i.e., what is the steady thermal state. If the
steady state is well below a temperature threshold, then there
is no need to perform DTM as long as the same periodicity
holds. Our moment matching algorithm can directly compute
such an asymptotic steady state from the very beginning of the
period, producing fast and accurate prediction. On the other
hand, if the steady state is very close to some critical temper-
ature, only the pure spectrum analysis is needed to find out
the perturbations around the steady temperature. In that case,
DTM is necessary whenever the temperature pulses surpass the
threshold.

If there are several phases involved in the input power
traces, we can compute the responses for each phase using the
proposed methods and combine them to report the temperature
profile as done in the TMMPWC method.

VI. TIME COMPLEXITY ANALYSIS

A. TMMSpectrum Method

For a thermal circuit with N nodes, if only a few moments
(q � n) are required, the time complexity of TMMSpectrum
is about

O(TMMPWC) + O(kN1.5). (18)

Since TMMPWC will be performed first, the only overhead
here is the complexity of spectral analysis. kN1.5 is the cost
of the spectrum analysis on k sampling points in (17), and
O(TMMPWC) is the cost of TMMPWC, which will be ana-
lyzed next.

B. TMMPWC Method

For TMMPWC, the time complexity analysis is more in-
volved. As pointed earlier, the major computation cost of
TMMPWC is the moment computation, the orthonormalization
process for pole computation, and residue computation. Still,
for a thermal circuit with N nodes, if only a few moments
(q � n) are required, the time complexity of TMMPWC can
be approximated as

O(N1.5) + O(qN ∗) + O(q2N) + O(qN)

+ O(2q3) + O(q3) + O(q2N) + O(qN) (19)

where N1.5 is the time complexity for LU decomposition for
a sparse matrix. The first qN ∗ is the cost of q forward and
backward substitutions for solving q moments in (10) for sparse
matrices, where N ∗ is the number of nonzeros in the L and U
matrices, which is typically 2N for sparse matrices. q2N is the
cost for the orthonormalization process. The next qN term is
the cost for the congruence transformation in (15). 2q3 is the
cost to get the inverse matrix of the reduced dense matrix Ĝ
and to perform the eigen-decomposition of Ĝ−1Ĉ. The second
q3 is the cost for the LU decomposition of the residue-solving
matrix in (12). The second q2N term is the cost for solving
residues for N nodes using backward and forward substitutions
in (12). The last term is the cost to compute the time-domain
response for all N nodes in a specific time point.

We showed above the computation cost of the entire
TMMPWC process. However, the poles are thermal circuit
information and therefore do not change with the power inputs.
Therefore, the poles only need to be computed once and reused
for each following interval. Hence, the analysis process for
each interval only involves the computation of moments and
residues. Given the fact that we can reuse matrices G−1 and
G−1C in (10) and (12) in these processes, the serial process-
ing of partitioned input power trace should be controllable
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TABLE I
PERFORMANCE EVALUATION OF TMMSPECTRUM

ON SPEC CPU 2000 PROGRAMS

and linear to the number of intervals. For each interval, the
computing cost of the temperature changes in real time can be
written as

O(qN ∗) + O(q2N) + O(qN) (20)

where qN ∗, for computing the moments and q2N , computes the
residues and qN computes the time-domain response at a spe-
cific time point. Notice that the time complexity becomes linear
in terms of the size of thermal circuits in runtime temperature
computation.

Notice that the time complexities of both analyses are inde-
pendent of time intervals or number of time steps used in the
traditional integration-based transient simulation, which is the
major advantage and speedup over traditional methods.

VII. EXPERIMENTAL RESULTS

The proposed algorithm has been implemented in Matlab.
We use the modified Compaq Alpha 21364 microarchitecture
in Fig. 3 for generating power traces and equivalent thermal
models similar to that in [22]. To perform fair comparison,
we also implemented the traditional integration-based thermal
simulation method used in HotSpot in Matlab in order to
compare the accuracy and speed difference between the two
approaches.

A. Results for TMMSpectrum

We evaluate our results using benchmarks from the SPEC
CPU 2000 suite [1]. We select three programs Art, Lucas,
and Wupwise and run for ten billion instructions and simulate
the periodical portions. Since the hottest unit is the integer
register file, we compute the temperature changes of one typical
integer register file as an example.

Table I summarizes the statistics of the three programs
and experimental parameters. Column #II is the number of
instruction intervals, which is about 10 µs. Column #S is the
number of samplings used in the spectrum analysis. Columns
CPU (HotSpot) and CPU (TMMSpectrum) are the CPU times
for the traditional simulation method used in HotSpot and our
proposed method. The CPU time is in seconds. The simulated
thermal circuit consists of about 166 nodes. Although the
thermal circuit is small, given the very long power input trace
(billions of instruction cycles), the simulation time of HotSpot
will still be long as shown in Table I. In the test cases, six poles
are computed from the projection-based MOR method to com-
pute the transient response. We find that six poles are typically
good enough to give fairly good results.

Fig. 5. Temperature comparison between TMMSpectrum and HotSpot under
Lucas program.

Fig. 6. Temperature comparison between TMMSpectrum and HotSpot under
Art program.

From Table I, we can see that the proposed method has
10×–100× speedup over the traditional simulation method.

Fig. 5 shows the transient temperature change comparison
under Lucas benchmark for about 20 000 simulation points,
where each point is 3.3 µs. Fig. 6 shows the transient tem-
perature change comparison under Art benchmark for about
10 000 points. Fig. 7 shows the transient temperature change
under Wupwise benchmark. It can be seen that the results
from our new algorithm match fairly well with the HotSpot
simulation results but with at least 10× shorter CPU time, as
shown in Table I. Note that given longer simulation interval,
the speedup will be further increased as the new method does
not depend on the number of simulation intervals.

For the results shown in Fig. 7, we only use six poles to
compute the transient response at each node. However, we can
reliably compute more poles via the projection-based method
we described in Section IV-C. If we use more poles to repre-
sent the system model, for example, eight poles, the transient
simulation results are better with respect to the responses from
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Fig. 7. Temperature comparison between TMMSpectrum and HotSpot under
Wupwise program using six poles.

Fig. 8. Temperature comparison between TMMSpectrum and HotSpot under
Wupwise program using eight poles.

HotSpot (especially when t increases), which is shown in
Fig. 8.

To show the detail waveforms due to periodic power trace, we
enlarge Fig. 6, as shown in Fig. 9. It can be seen that the temper-
ature indeed changes periodically over time. The HotSpot and
the proposed new method match each other very well.

B. Results for TMMPWC

As mentioned earlier, proper interval partitioning should be
performed for extremely long power trace to avoid the error
caused by average power drifting; otherwise, the temperature
computed by the proposed method may have noticeable dif-
ferences from the ones given by HotSpot for very long power
traces. The main reason is that the periodic power inputs may
change slowly over time. As a result, the dc components may
drift from the value we use for the moment matching at t = 0.
To resolve this problem, we can partition the simulation in-

Fig. 9. Detailed periodic temperature comparison between TMMSpectrum
and HotSpot under Art program.

tervals into several intervals, and each interval is simulated
sequentially based on its start and end times. The goal here
is to make sure that the dc components from periodic power
trace drifts are very small so that the moment matching method
is accurate enough. For very long simulation times, interval-
by-interval simulation improves the simulation accuracy at a
small computing cost, as we analyzed in Section VI.

We evaluate our results by running ten benchmark programs
from SPEC CPU 2000 suite [1]. In our experiments, we run
all the benchmarks on a 3-GHz processor, which yields 0.33 ns
per cycle period. We sample each component’s output power at
10 K-cycle intervals, corresponding to 3.3 µs in each time inter-
val. We first arbitrarily set the interval window size to be 1500
intervals to evaluate the performance of TMMPWC. On the
other hand, SPICE and HotSpot will run the entire power trace
interval-by-interval to derive the whole temperature profile.

Table II summarizes the statistics of these programs and
experimental results. Column 2 is the number of instruc-
tion cycles. Columns 3 and 4 summarize the CPU times for
TMMPWC and Matlab-based SPICE, with speed-up ratio listed
in column 5. The last two columns give the average and
maximum errors of our algorithm compared to that given by
HotSpot for each benchmark program.

We notice that our algorithm achieves almost 100× speed-
up over SPICE. Considering the faster runtime provided by
Linux workstation for HotSpot, the actual runtime speed-up of
TMMPWC (using Matlab) over HotSpot will be larger. For ac-
curacy evaluation, the average and maximum errors compared
to HotSpot among all these ten benchmarks are only 0.13 ◦C
and 0.37 ◦C, which provides a highly accurate temperature
prediction for online DTM application. Here, we changed the
moment matching method to the projection method described in
Section IV-C, and in all the test cases, seven poles are computed
for transient response analysis.

To show the detailed waveform comparison of TMMPWC
with HotSpot, we pick a runtime window of the temperature
variation at Integer register file under program gcc. Also, we
did not apply spectrum analysis in this experiment because,
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TABLE II
PERFORMANCE EVALUATION OF TMMPWC ON SPEC CPU 2000 PROGRAMS

Fig. 10. Temperature comparison between TMMPWC and HotSpot under
gcc program.

as mentioned earlier, in most cases, the dominant energy of
the power trace is in its dc component, and ignoring all the
high frequencies will have very little impact on the temperature
change trend. Indeed, as illustrated in Fig. 10, each point calcu-
lated by TMMPWC matches very well with the corresponding
temperature point in HotSpot curve, and the level of precision
will be more than enough for most DTM techniques.

We also study the effect of interval window sizes on the
performance of TMMPWC. Fig. 11 depicts the runtime and av-
erage and maximum errors for each TMMPWC run under dif-
ferent window sizes. We select benchmark program Wupwise
as an example. From the figure, we can see that the execution
time will decrease rapidly with increasing window size. This is
because of the decreased interval number to be calculated by
TMMPWC. The maximum error from TMMPWC as compared
to HotSpot will increase with a larger window size, which is due
to a less accurate average power estimation within that period
of time. However, the error is less than 0.7 ◦C for the maximum
window size of 6000. And the average error almost stays the
same for all window sizes around only 0.1 ◦C. Compared to a
real temperature deviation of 2 ◦C offered by the temperature
sensor in the previous DTM scheme [22], our new algorithm
provides a viable and reliable online temperature estimation for
DTM applications.

Fig. 11. TMMPWC performance evaluation under different window sizes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed two efficient thermal analysis
methods for architecture-level dynamic thermal monitoring and
management. The first method, i.e., TMMSpectrum, exploits
the periodic patterns in power consumptions of the architecture
modules in microprocessors and embedded high-performance
systems. We proposed to use spectrum analysis in the frequency
domain to compute the periodic responses of temperatures. The
second method, i.e., TMMPWC, exploits the fact that the av-
erage power consumption of architecture-level modules in mi-
croprocessors running typical workloads determines the trend
of temperature variations. As a result, we can further speed up
the thermal analysis by using piecewise constant average power
inputs. To compute transient response due to initial conditions
and constant/average power inputs, numerically stable moment
matching method with enhanced pole searching methods has
been carried out. The resulting fast thermal analysis algorithms
lead to 10×–100× speedup over traditional integration-based
SPICE-like HotSpot transient simulation with small accuracy
loss. TMMPWC in the runtime setting becomes linear in terms
of circuit sizes and is well suited for online thermal estimation
for the DTM.

In the future, we will integrate our thermal simulation engine
with the DTM optimizer described in Section V to complete the
architecture-level DTM framework.



2892 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

ACKNOWLEDGMENT

The authors would like to thank Associate Editor
Dr. W. Schoenmaker for his encouragement and appreciation
and the two anonymous reviewers for their comments and
suggestions.

REFERENCES

[1] Standard Performance Evaluation Cooperation. Spec benchmarks.
[Online]. Available: http://www.spec.org/cpu2000/

[2] International Technology Roadmap for Semiconductors (ITRS), 2004
Update, 2001. [Online]. Available: http://public.itrs.net

[3] D. Brooks and M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” in Proc. Int. Symp. High-Performance
Comp. Architecture, 2001, pp. 171–182.

[4] M. Celik, L. Pileggi, and A. Odabasioglu, IC Interconnect Analysis. Nor-
well, MA: Kluwer, 2002.

[5] Y.-K. Cheng, C.-H. Tsai, C.-C. Teng, and S.-M. Kang, Electrothermal
Analysis of VLSI Systems. Norwell, MA: Kluwer, 2000.

[6] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Pade
approximation via the Lanczos process,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 14, no. 5, pp. 639–649, May 1995.

[7] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore,
MD: The Johns Hopkins Univ. Press, 1989.

[8] S. Gunther, F. Binns, D. Carmean, and J. Hall. (2001, First Quarter).
Managing the impact of increasing microprocessor power consump-
tion. Intel Technol. J. [Online]. 5(1). Available FTP: download.intel.com/
technology/itj/q12001/pdf/art_4.pdf

[9] W. Huang, M. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusamy, “Compact thermal modeling for temperature-aware design,”
in Proc. DAC, 2004, pp. 878–883.

[10] K. J. Kerns and A. T. Yang, “Stable and efficient reduction of large,
multiport RC network by pole analysis via congruence transformations,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 16, no. 7,
pp. 734–744, Jul. 1998.

[11] K. Lee and K. Skadron, “Using performance counters for runtime
temperature sensing in high performance processors,” in Proc. Work-
shop HP-PAC, Int. Parallel and Distrib. Process. Symp., Apr. 2005,
p. 232.1.

[12] S. Lee, S. Song, V. Au, and K. Moran, “Constricting/spreading resistance
model for electronics packaging,” in Proc. ASME/JSME Thermal Eng.
Conf., Mar. 1995, pp. 199–206.

[13] H. Li, P. Liu, Z. Qi, L. Jin, W. Wu, S. X.-D. Tan, and J. Yang, “Efficient
thermal simulation for run-time temperature tracking and management,”
in Proc. IEEE ICCD, Oct. 2005, pp. 130–133.

[14] P. Liu, Z. Qi, H. Li, L. Jin, W. Wu, S. X.-D. Tan, and J. Yang, “Fast thermal
simulation for architecture level dynamic thermal management,” in Proc.
ICCAD, Nov. 2005, pp. 639–644.

[15] A. Odabasioglu, M. Celik, and L. Pileggi, “PRIMA: Passive reduced-
order interconnect macromodeling algorithm,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 17, no. 8, pp. 645–654,
Aug. 1998.

[16] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for tim-
ing analysis,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 9, no. 4, pp. 352–366, Apr. 1990.

[17] L. T. Pillage, R. A. Rohrer, and C. Visweswariah, Electronic Circuit and
System Simulation Methods. New York: McGraw-Hill, 1994.

[18] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in Proc. Int. Conf. PACT, 2001, pp. 3–14.

[19] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Discov-
ering and exploiting program phases,” in Proc. IEEE Micro: Micro’s Top
Picks from Comput. Architecture Conf., 2003, pp. 84–93.

[20] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in
Proc. IEEE ISCA, 2003, pp. 45–57.

[21] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan, “Temperature aware microarchitecture,” in Proc. IEEE ISCA,
2003, pp. 2–13.

[22] ——, “Temperature aware microarchitecture: Extended discussion and
results,” Dept. Comput. Sci., Univ. Virginia, Charlottesville, Tech. Rep.
CS-2003-08, Apr. 2003.

[23] B. Wang and P. Mazumder, “Fast thermal analysis for VLSI circuits via
semi-analytical green’s function in multi-layer materials,” in Proc. IEEE
ISCAS, 2004, pp. II-409–II-412.

[24] T. Y. Wang and C. C. Chen, “3-D thermal-ADI: A linear-time chip level
transient thermal simulator,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 21, no. 12, pp. 1434–1445, Dec. 2002.

[25] ——, “Spice-compatible thermal simulation with lumped circuit model-
ing for thermal reliability analysis based on model reduction,” in Proc.
ISQED, 2004, pp. 357–362.

[26] Y. Zhan and S. Sapatnekar, “Fast computation of the temperature distribu-
tion in VLSI chips using the discrete cosine transform and table look-up,”
in Proc. ASPDAC, Jan. 2005, pp. 87–92.

Pu Liu (S’05) received the M.S. degree in control
theory and control engineering from Beijing Insti-
tute of Technology, Beijing, China, in 2002. He is
currently working toward the Ph.D. degree in elec-
trical engineering at the University of California,
Riverside.

His research interests focus on model order re-
duction (MOR) techniques for linear time-varying
system and nonlinear system.

Hang Li (S’05) received the B.S. and M.S. degrees
in electrical engineering from Beijing Polytechnic
University, Beijing, China, and the University of
Cincinnati, Cincinnati, OH, in 2000 and 2002, re-
spectively. He is currently working toward the Ph.D.
degree at the University of California, Riverside.

He is a Research Staff Member with the R&D
Department, Micron Imaging, Micron Technology,
Inc., San Jose, CA. His research interests include
high-performance on-chip power network analysis
and optimization, and fast thermal circuit simulation.

Lingling Jin received the B.S. degree in computer
science from Zhejiang University, Zhejiang China,
in 2001, and the Ph.D. degree in computer science
and engineering from the University of California,
Riverside, in 2006.

She is currently a Low-Power Engineer with
Nvidia, Santa Clara, CA.

Wei Wu received the B.S. degree in electrical engi-
neering from Southeast University, Nanjing, China,
in 2000. She is currently working toward the Ph.D.
degree in the Computer Science Department, Univer-
sity of California, Riverside.

Her research interests include temperature-aware
and power-aware microarchitecture design and low-
power microprocessor design.



LIU et al.: FAST THERMAL SIMULATION FOR RUNTIME TEMPERATURE TRACKING AND MANAGEMENT 2893

Sheldon X.-D. Tan (S’96–M’99–SM’06) received
the B.S. and M.S. degrees in electrical engineering
from Fudan University, Shanghai, China, in 1992 and
1995, respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Iowa, Iowa City, in 1999.

He is an Associate Professor with the Department
of Electrical Engineering, University of California
(UC), Riverside. He was a Faculty Member with the
Department of Electrical Engineering, Fudan Uni-
versity, from 1995 to 1996. He was with Monterey

Design Systems, Inc., from 1999 to 2001 and with Altera Corporation from
2001 to 2002. He is the coauthor of the book Symbolic Analysis and Reduction
of VLSI Circuits (Springer/Kluwer, 2005). His research interests include several
aspects of design automation for VLSI integrated circuits, namely modeling
and simulation of analog/RF/mixed-signal VLSI circuits, high-performance
power and clock distribution network simulation and design, signal integrity,
power modeling, thermal modeling, thermal optimization in VLSI physical and
architecture levels, and embedded system designs based on FPGA platforms.

Dr. Tan has served as a Technical Program Committee Member for ASPDAC,
BMAS, ASPDAC, ISQED, and ICCAD. He is an Associate Editor of the Jour-
nal of VLSI Design. He was the recipient of the National Science Foundation
(NSF) CAREER Award and the UC Regent’s Faculty Fellowship both in 2004.
He received a Best Paper Award Nomination from the 2005 IEEE/ACM Design
Automation Conference and the Best Paper Award from the 1999 IEEE/ACM
Design Automation Conference.

Jun Yang (S’00–M’02) received the B.S. degree in
computer science from Nanjing University, Nanjing,
China, in 1995, the M.A. degree in mathematical sci-
ences from Worcester Polytechnic Institute, Worces-
ter, MA, in 1997, and the Ph.D. degree in computer
science from the University of Arizona, Tucson,
in 2002.

From 2002 to 2006, she was an Assistant Professor
of computer science and engineering with the Uni-
versity of California, Riverside. She is currently an
Assistant Professor with the Department of Electrical

and Computer Engineering, University of Pittsburgh, Pittsburgh, PA. Her
research interests include low-power and thermal-aware microarchitecture de-
signs, hardware security, application-specific processors, and sensor networks.

Dr. Yang is a member of the Association for Computing Machinery.


