
 GRAPH: A network of NODES (or VERTICES) and ARCS (or EDGES) joining 
the nodes with each other

 DIGRAPH: A graph where the arcs have an ORIENTATION (or DIRECTION).

 A CHAIN between two nodes is a sequence of arcs where every arc has exactly 
one node in common with the previous arc

 A PATH is a chain of directed arcs, where the terminal node of each arc is the 
initial node of the succeeding arc:
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A graph is said to be CONNECTED if there is a continuous chain of edges 
joining any two vertices.

A graph is STRONGLY CONNECTED if for all ordered pairs of vertices (i,j) 
there is a path of arcs from i to j.

A graph is COMPLETE if every node is directly connected to every other node.

A TREE is a connected graph with no cycles.

A SPANNING TREE is a tree that contains all the nodes of a graph.
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CYCLE: a-b-c-d; ARCS: a-b, c-b, c-d, d-a

CIRCUIT: a-b-c-d; ARCS: a-b, b-c, c-d, d-a



GIVEN: A digraph G with a set of nodes 1,2,…,m, and

 a set of n directed arcs i-j emanating from node i and ending in node j,

 with each node i, a number bi that is the supply (if bi>0) or the demand (if bi<0); if 

bi=0, then the node is called a transshipment node,

 with each arc i-j, a flow of xij and a unit  transportation / movement cost of cij.

ASSUMPTION:  i=1..mbi = 0

PROBLEM MCNF:      Minimize    all defined i-j (cijxij)

st  j xij - k xki = bi for i=1,2,…,m

Lijxij Uij for all i-j

The coefficient matrix for the constraints is called the NODE-ARC 
INCIDENCE matrix.
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A Prototypical Example
A new amusement park is being constructed by a large corporation.  Cars are not allowed 
into the park, but there is a system of narrow, winding pathways for automated people 
movers and pedestrians.  The road system is shown in the figure below, where O 
represents the entrance to the park and A-F represent sites of various popular 
amusements.  The numbers above the arcs give the distances of the arcs.

The designers face three questions:

2

5

2 7

4

5

7

1

4

31

O

A

C

B

E

D

F

4

 2020, Jayant Rajgopal



1. Electrical lines must be laid under the pathways to establish communication between all 
nodes in the network.  Since this is an expensive process, the question to be answered is 
how this can be accomplished with a minimum total distance ?

2. Location F is extremely popular with visitors, and it is planned that a small number of 
people movers will run directly from the entrance O to site F.  The question is which path 
will provide the smallest total distance from O to F ?

3. During the peak season the number of people wanting to go from O to F is very large.  
Thus during this time various routes may be followed from O to F (irrespective of 
distance) so as to accommodate the increased demand through additional trips. 
However, due to the terrain and the quality of the construction, there are limits on the 
number of people mover trips that can run on any given path per day; these are different 
for different paths.  The question is how to route various trips to maximize the number of 
trips that can be made per day without violating the limits on any individual path ?

 Question 1 may be answered by solving a minimum spanning tree problem.

 Question 2 may be answered by solving a shortest path problem.

 Question 1 may be answered by solving a maximum flow problem.

 2020, Jayant Rajgopal



Let us represent the origin by O, and suppose that there are n additional nodes 
in the network:

Objective at Iteration i:  To find the ith closest node from O, along with the 
corresponding path and distance.

Input at Iteration i: The closest, the 2nd closest,...,(i-1)th closest nodes to O, 
along with their paths and distances.   These are designated as permanent
nodes (P) while the remaining nodes are designated as temporary nodes (T). 
Initially, P={O} and T={all other nodes}.

At Iteration i: 
 Determine all nodes in T that are directly linked to at least one node in P; 

call this subset of T as .  

 For each j, compute Dj= Minimum {shortest distance from O to a 
permanent node  + distance of direct link from that permanent node  to j }.

 Determine the j that has the minimum value for Dj.  Remove j from T
and add it to P along with the shortest path and distance.

At the end of iteration n the shortest path to each node is available.
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P={O}, DO=0;  

T={A,B,C,D,E,F}

= {A, B, C}

DA=Min{DO+LOA}=2
DB=Min{DO+LOB}=5
DC=Min{DO+LOC}=4

Closest node = {A}, DA=2
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P={O,A}, DO=0, DA=2;  

T={B,C,D,E,F}

= {B, C, D}

DB =Min{DO+LOB,DA+LAB}
=Min{0+5, 2+2}=4

DC =Min{DO+LOC}=0+4=4
DD =Min{DA+LAD}=2+7=9

2nd closest node = {C}, DC=4(breaking the tie arbitrarily…)
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P={O,A,C}, DO=0, DA=2, DC=4;  

T={B,D,E,F}

= {B, D, E}

DB =Min{DO+LOB, DA+LAB, DC+LCB}
=Min{0+5, 2+2, 4+1}=4

DD =Min{DA+LAD}=2+7=9
DE =Min{DC+LCE}=4+4=8

3rd closest node = {B}, DB=4
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P={O,A,C,B}, DO=0, DA=2, DC=4, DB=4;  

T={D,E,F}

 = {D, E}

DD=Min{DA+LAD, DB+LBD}
=Min{2+7, 4+4}=8

DE =Min{DC+LCE, DB+LBE}
=Min{4+4, 4+3}=7

4th closest node = {E}, DE=7
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P={O,A,C,B,E}, DO=0, DA=2, 
DC=4, DB=4, DE=7;  

T={D,F}

 = {D, F}

DD=Min{DA+LAD, DB+LBD, DE+LED}
=Min{2+7, 4+4, 7+1}=8

DF =Min{DE+LEF}=7+7=14

5th closest node = {D}, DD=8
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P={O,A,C,B,E,D}, DO=0, DA=2, 
DC=4, DB=4, DE=7, DD=8;  

T={F}

 = {F}

DF=Min{DD+LDF, DE+LEF}
=Min{8+5, 7+7}=13

6th closest node = {F}, DF=13

2

4

O

A

C

B

0

D

2

2

4

E

1
3

4
4

7

F

7

5

8

 2020, Jayant Rajgopal



 2020, Jayant Rajgopal



STEP 0: Start with some feasible flow (if one isn't obvious let flow in each arc be equal 
to zero) from the source node to the sink node.

STEP 1:
If flow in arc (i-j) is less than capacity of arc (i-j) assign it to set I (set of arcs along 
which amount of flow can be Increased).  
If flow in arc (i-j) is greater than zero assign it to set R (set of arcs along which amount 
of flow can be Reduced).  

NOTE:  An arc can belong to both I and R!

STEP 2: LABELING PROCEDURE

 Label the source node.

 If the flow along an arc (i-j) is from a labeled node to an unlabeled node and the 
arc belongs to I, then label the unlabeled node, call the arc a forward arc and let 
I(i-j) = Capacity(i-j) - Flow(i-j)

 If the flow along an arc is from an unlabeled node to a labeled node and the arc 
belongs to R, then label the unlabeled node and call the arc a backward arc and 
let R(i-j) = Flow(i-j)
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Continue the labeling procedure until (a) the sink has been labeled, or 
(b) no more nodes can be labeled.

STEP 3: If the sink has not been labeled, STOP; this is the optimum 
flow.  If the sink has been labeled go to Step 4.

STEP 4: There is a chain C from source to sink.  
 If C has only forward arcs, increase the flow in each arc by an 

amount f = Min(i-j)CI(i-j)

 If C has forward and backward arcs, increase the flow in each 
forward and decrease the flow in each backward arc by an amount 
f = MIN {k1=Min(i-j)ICI(i-j),  k2=Min(i-j) RC{R(i-j)}

Return to Step 1
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Cut Set: Suppose V1 is any subset of all the nodes that contains 
the sink but not the source, and V2 is the set of remaining nodes.  
Then the corresponding cut set is the set of all arcs (i-j) such that 
iV2 and jV1. 
The capacity of the cut is the sum of the capacities of all arcs in 
the cut set.
E.g.,
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V1={B, D, Si}
V2={So, A, C, E}

V1={C, D, E, Si}
V2={So, A, B}

Cut Set={So-B,A-B,A-D,C-B,E-D,E-Si}
Capacity=5+2+7+1+1+7 =23

Cut Set={So-C,A-D,B-D,B-E}
Capacity=4+7+4+3=18 
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Lemma 1: The total flow from source to sink in any feasible flow is no higher than 
the capacity of any cut set.

In particular, the optimal flow (which is obviously also a feasible flow) can thus 
never be higher than the capacity of any cut set. 

So, if we find some feasible flow and some cut set for which the flow is equal to 
the capacity of the cut set, then this must be the optimal flow!

Now, suppose we are doing our labeling and we get to a point where we’re unable 
to label the sink.  Let V1 here correspond to the nodes (including the sink…) that 
are not labeled and V2 to the nodes that have been labeled, and let us denote the 
corresponding cut set via C.

Lemma 2: If the sink cannot be labeled, then the capacity of the cut set C must be 
equal to the current flow from source to sink.

So, if the sink cannot be labeled, the current flow must be optimal –we just use 
Lemma 2 to verify that the sink cannot be labeled.
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 Recall the MCNFP
 Assuming that i=1..m bi = 0

PROBLEM MCNF:      

Minimize    all defined i-j (cijxij)

st j xij - k xki = bi for i=1,2,…,m

Lij xij Uij for all i-j

 2020, Jayant Rajgopal



Minimize    i j (cijxij)

st j xij =  Si if i  pure supply nodes

-j xij = -Dj if i  pure demand nodes

j xij - k xki = 0 or Si or Di if i  transshipment node

(as the case may be…)

0xij for all i-j
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 Define the starting node as a source node with a supply of 1 unit and the 
ending node (say m) as a sink node with a demand of 1 unit.  

 All other nodes are transshipment nodes

 The cost associated with a node is its distance

Then we have

Minimize    all defined i-j (cijxij)

st j x1j = 1

j xij - k xki = 0 for i=2,…,m-1

- k xkm = -1

0xij for all i-j
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 Let the source node have a very large supply (M) and the sink node have a very large 
demand equal to the same value M  

 All other nodes are transshipment nodes

 The cost associated with all arcs are equal  to zero, and the upper bound Uij for the flow 
along arc i-j is set to the capacity of the arc (Cij)

 Finally, add a fictitious arc  from the source to the sink node with Uso-si=M and a cost of 1

Then we have (assume that source node is node no. 1, and the sink node is node no. m)

Minimize  xso-si

st j xso-j = M

j xij - k xki = 0   for i=2,…,m-1

- k xk-si = -M

0 xij Uij for all i-j
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