
 Pure Integer Programs: all decision variables restricted to integer
values
 0-1 programs
 general IP problems

 Mixed Integer Programs: some variables restricted to integer
values; others may be continuous
 0-1 programs
 general IP problems

Very versatile because many “real-world” applications involve
variables that are naturally integer valued. More importantly, 0-1
variables allow us to model logical decisions

Also, many combinatorial optimization problems (where an
optimum combination out of a possible set of combinations must
be determined) can be cast as IPs.
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Examples of 0-1 Integer Programming Model Formulations

1. LIMITED SET OF DISCRETE VALUES
Suppose X can only take on one of the values in the set {a1, a2, … , an}; e.g., in designing a water distribution system the pipe diameter
may be a variable that can belong to the set {6”, 8”, 10”, 12”} because pipe is available in only these diameters. How do we model
this?

2. KNAPSACK PROBLEMS
Suppose we have n different items and item i has weight wi and value vi. A knapsack can hold at most W units of weight. How do we
load the knapsack so that we maximize the value of its contents?
In the multi-dimensional knapsack problem we may have additional constraints, e.g., we’re given the volume of each item and the
volume of the knapsack.

3. BATCH SIZE PROBLEMS
A variable in the model can be either zero or positive. However, if it is positive, it must be at least as large as some specified lower
bound: e.g., the supplier for some raw material will only supply in amounts greater than or equal to some specific value. How do we
model this?

4. BIN PACKING PROBLEMS (one dimensional)
Suppose we have n different items and item i has weight wi. A bin can hold at most W units of weight. How do we find the minimum
number of bins in which we can pack all n items (assume that W ≥ wi for all i)?

5. FIXED CHARGE PROBLEMS
There is a fixed cost associated with an activity regardless of the level of the activity (usually in addition to some variable cost that does
depend on the level of the activity…). For example, (1) if a set of items is purchased from a vendor, one incurs some fixed cost for
order preparation, regardless of how many units are ordered, (2) when a batch of parts is made on a machine there is a fixed setup cost
independent of the batch size, (3) when a production or distribution facility is operated, there may be a fixed cost that is independent of
the volume handled at the facility, (4) when a crew is assigned to a task, there may be some fixed cost for the assignment regardless of
the size of the crew, et cetera. All of these are example of the so called fixed charge problem.

6. PLANT LOCATION PROBLEMS
A simple example:
• n sites in a region that require a product
• demand in area containing site i= di units
• Want to erect no more than m plants
• Capacity at site i = si

• fi cost to build and operate plant at site i
• cij to ship each unit along route i-j
Problem: Find the optimal plant locations and the optimal shipping schedule to minimize all costs.
What if there is a cost vij to set up and operate shipping route from i to j? What if we don’t have capacity constraints

7. CAPITAL BUDGETING PROBLEMS
Suppose a total of m different choices of investments are available for selection: examples might include choosing among possible
product lines for manufacture, selecting from different configurations of capital equipment, settling upon research and development
projects, choosing a portfolio of investments etc. Often it makes no sense to go for partial investments and so each choice is a go / no-
go option. Assume that rj is the return resulting from the jth investment and that aij is the amount of resource i (such as cash or manpower
or space) that is used by the jth investment; there are bi units of resource i available. Which investments should be chosen?

Extensions: Incorporating other logical considerations:
"Either-Or" conditions: Either investment k or investment l can be selected, but not both
"No more than" conditions: At most p investments can be selected (where p<m).
"At least" conditions: At least p investments must be selected (where p<m).
"If-Then" conditions: a) If investment k is chosen, then investment l must also be chosen.

b) If investment k is chosen, then investment l cannot be chosen.
Multiple choice constraints: Say we group the investments into different classes/types. We want at least one from each class to be
selected. Or perhaps, the constraint is that IF we choose a particular class of investments then we want exactly one from this class.



8. SET COVERING, PACKING AND PARTITIONING PROBLEMS

Let Γ be some given set of n items and B={B1,...,Bm}, where each Bj is a nonempty subset of Γ with B1∪B2∪…∪Bm=Γ. Also define
for each i=1,2,…,n, the set Fi = {j∈(1,2,…,m) | i∈Bj}.

In a set representation problem we want to find some subset of Γ (say E) such that E contains at least one common element with each
subset Bj (i.e., a “representative” of that set). The objective might be to find the representation with the smallest number of elements,
i.e., a minimum cardinality representation (MCR) for B, or perhaps the least cost representation.

In a set covering problem we want to find a finite collection of subsets (say Ω) from the set of subsets B={B1,...,Bm}, such that each
element of the set Γ is contained in at least one of the subsets selected for Ω. Here Ω is called a “cover” for the set Γ (some members
in Γ may appear in more than one subset in set Ω). The objective might be to find the cover that has the minimum no. of subsets from
B (i.e., minimum cardinality), or if there is a cost cj associated with a particular subset Bj, we might want to find the minimum cost cover

The set partitioning problem is similar, except that each member of Γ is assigned to exactly one subset inΩ. In other words the members
of Γ are to be “partitioned” among members of set Ω.

In a set packing problem, we try to choose some finite collection of subsets (say Ω) from the set of subsets B={B1,...,Bm}, that are
mutually disjoint. The objective could be to maximize the number of these subsets (i.e., |Ω|) or the value of the subsets selected in the
collection Ω.

Example 1a: Consider the problem of locating a set of facilities (fire stations or hospitals or police stations…) to serve some collection
Γ of n different areas. Suppose we have m candidate locations for locating these facilities, and each location j can service some subset
Bj of areas from the set Γ. Our goal might to be find the smallest (or least cost) such set of facility locations so that all areas are covered.
This may be formulate as a set covering problem.

Example 1b: Consider an airline flight personnel scheduling problem. The airline has a number of routing legs (e.g., 10 A.M. N.Y. to
Chicago, or 6 P.M. Chicago to L.A.) to be flown. A combination of these legs constitutes a duty period, and a sequence of duty periods
that begins and ends at the same city is called a pairing. Crews must be then assigned to these pairings. Each pairing has several complex
rules (e.g., no more than 7 flight legs, at least 9.5 hours between consecutive duty periods, each duty period can be no more than 12
hours etc.). The objective is to form a minimum cost set of pairings that covers all flight legs (Γ) in a time table.
One approach: Suppose we have a total of n flight legs to be covered, and that we can generate a total of m good pairings (where
m>>n), where each pairing is made up of one or more legs (subsets of Γ). The pairings are constructed by taking into account arrival
and departure times for making connections between two successive legs, allowing for ground maintenance times, other constraints such
as those listed above, etc. Let cj be the cost of assigning a crew to the legs in pairing j. We may then formulate this as a set covering

problem with the objective of minimizing crew costs.

Example 2: Consider a region consisting of n different sales areas. These sales areas are to be combined into sales regions and a sales
rep is to be assigned to each region. Suppose we can generate a set of m potential regions where each region is a collection of some
areas (which provides a good amount of work for the sales rep and perhaps satisfies other constraints). Let the cost of assigning a sales
rep to the jth collection be cj. The problem may then be formulated as a set partitioning problem.

Example 3: Consider the problem of scheduling a number of meetings involving a number of different people. Suppose m meetings
have to be scheduled next week; for the sake of simplicity, assume that each meeting lasts 1 hour and that there are T different one hour
time slots available during the next week. Suppose that there are a total of n people and we are given the list of meetings from the
collection of m meetings that each of the n people must attend (Fi). The problem of scheduling as many meetings as possible without
any conflicts maybe formulated as a set packing problem.



 Γ={A,B,C,D,E,F,G,H,I,J,K}

 FA=(B1,B3,B6,B8); FB=(B1,B2,B4); FC=(B1,B2,B6); …;
FH=(B3,B8,B10); …; FK=(B5,B6,B8,B10);

 Set Representation: E= (A,G,I,K) or (A,E,G) or (A,B,D,E,K)

 Set Covering: Ω= (B2,B4, B8) or (B1,B2,B8,B9) or (B1,B3,B5,B7,B8,B9)
 Set Partitioning: Ω= (B1,B9,B10)
 Set Packing: Ω= (B6,B7,B9) or (B1,B9,B10)

B=

B1 =(A,B,C,D)
B2 =(B,C,F,G)
B3 =(A,H)
B4 =(B,D,E,I,J)
B5 =(D,E,F,K)

B6 =(A,C,J,K)
B7 =(D,G)
B8 =(A,H,J,K)
B9 =(E,F,I)
B10 =(G,H,J,K)
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Application G B = {B1, B2, …, Bm) Fi Xj=1 if…

Delivery &
Routing

Set of n delivery
locations

Set of m routes, each covering
some subset of locations

Routes that contain
location i

…route j is chosen

Facility
Location

Set of n areas
that require
service

Set of m locations, each
servicing some subset of areas

Locations that
service area i

…location j is chosen

Fire Hydrant
Location

Set of n street
blocks

Set of m locations, each
servicing some subset of
street blocks

Locations that
service block i

…location j is chosen

Sales force
Assignment

Set of n sales
areas to be
covered

Set of possible assignments,
each one covering some
subset of areas

Assignments that
cover area i

…assignment j is
chosen

Crew
Scheduling

Set of n flight
legs or segments

Set of m pairings each
covering some subset of
(sequential) flight legs

Pairings that cover
flight segment i

…pairing j is chosen

Committee
Selection

Set of n desired
committee
characteristics

Set of groups of people
(perhaps based on feasibility
or availability) each having
some subset of characteristics

Groups that contain
characteristic i

…group j is chosen
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Service Districts and Candidate Locations for EMS
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FIGURE: Flight Schedules for AA Example
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TABLE: Possible Pairings for AA Example

j Flights Sequence Cost j Flights Sequence Cost

1 101-203-406-308 2900 9 305-407-109-212 2600

2 101-203-407 2700 10 308-109-212 2050

3 101-204-305-407 2600 11 402-204-305 2400

4 101-204-308 3000 12 402-204-310-211 3600

5 203-406-310 2600 13 406-308-109-211 2550

6 203-407-109 3150 14 406-310-211 2650

7 204-305-407-109 2550 15 407-109-211 2350

8 204-308-109 2500
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9. USING 0-1 VARIABLES FOR OTHER LOGICAL CONSTRAINTS

Binary variables can be used to define a variety of logical constraints involving any set of variables; this usually results in a mixed
integer program involving the usual continuous variables as well as 0-1 variables.

Constraint Feasibility: The basis for all logical constraints arises from answering the following question: how does one use a 0-1 variable

in order to distinguish between when a constraint of the form g(x1,x2,...,xn )≥ 0 (or g(x1,x2,...,xn )≤ 0) is definitely satisfied, and when

it may or may not be satisfied?

Alternative Constraints: Suppose a problem has two constraints of the form g1(x1,x2,...,xn) ≤ 0 and g2(x1,x2,...,xn) ≤ 0, but we only

require that at least one of the two must hold. How would you account for this ? How would you extend the same logic if you had m
constraints out of which at least k should hold?
E.g., we want to enforce 0≤ x1, x2 ≤10 and at least one of x1 and x2 must be ≤ 5.

Conditional Constraints: Suppose you have constraints of the form g1(x1,x2,...,xn) >0 implies that g2(x1,x2,...,xn) ≤ 0. How would

you model this ?
(Note that the only circumstance under which the above implication is not satisfied is when both g1(x1,x2,...,xn)>0 and

g2(x1,x2,...,xn)>0).

Compound Alternatives: Suppose the set of n constraints are partitioned into k subsets as
S1= {gi(x1,x2,...,xn) ≤ 0 for i=1,2,..n1},

S2= {gi(x1,x2,...,xn) ≤ 0 for i=n1+1,n1+2,..n2},

: : :
Sk= {gi(x1,x2,...,xn) ≤ 0 for i=nk-1+1,nk-1+2,..n}

How would you model the requirement that at least one set of the constraints should be satisfied?

10. TRAVELING SALESMAN PROBLEM (a node covering problem):
Link i-j costs cij for i≠j. Find the cheapest path that starts at some city i and returns there after visiting each city exactly once.

11. PIECEWISE LINEAR FUNCTIONS
Suppose a function f(x) is of the form

 m1x 0≤x≤b1

 m1b1+ m2x 0≤x≤b2

 m1b1+ m2b2 + m3x 0≤x≤b3

 m1b1+ m2b2+ m3b3 + m4x 0≤x≤b4

Can we use LP to solve such problems?



 What is a minimum length tour that visits all nodes?

 Widely studied problem

 Very hard to solve larger
instances (NP-complete)

 Instances with >5000 cities
have been solved
optimally

 Very large instances have
been solved approximately
(10 million cities to within
a couple of percent of
optimum)
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Let xij = 1 if arc i-j is in the tour
0 otherwise

Minimize Si Sj cij xij

subject to Si xij = 1 ∀ j

Sj xij = 1 ∀ i

xij ∈ (0,1)

Are these
constraints
enough?
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Need to prevent subtours: for each possible subtour, add a constraint that makes the
subtour infeasible for the IP. These are called subtour breaking constraints.
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Let S be any proper subset of nodes, e.g.,
S = {2, 3, 4, 7, 9}.

This ensures that the set S will not have a subtour going through all S nodes.

7

2

9

3

4
Observations:

1. A subtour that includes all nodes of S
has |S| arcs

2. A tour for the entire network has at
most |S| - 1 arcs with two endpoints in
S.
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A traveling salesman tour

We constrain the problem so that there are at most 4 arcs in any tour incident
to nodes 2, 3, 4, 7, 9. In this instance we have 3.
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4
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Minimize Si Sj cij xij

subject to Si xij = 1 ∀ j

Sj xij = 1 ∀ i

���∈�,�∈�

(subtour breaking constraints)

xij ∈ (0,1)

Exponentially many constraints, too many to include in an IP or an LP!

In practice:

• Include only some of the constraints. Solve the LP.

• If a subtour appears as part of the LP solution, add a new subtour elimination
constraint to the LP, and solve again.
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feasible region

X’

Why not solve the Integer LP as a regular LP and “round off intelligently?”
 Not an illogical approach when all variables must be general integers. May turn out to be a

practical approach, especially if all the integer variables are expected to be “large” at the
optimum and feasibility is easy to maintain when rounding off

However...
 Usually doesn’t make sense with 0-1 programs
 Many times all “rounded-off” solutions may be infeasible:

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
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 In other cases, the rounded solution might be quite
far away from the integer optimum

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

LP optimum = x’, rounded-off to x1; whereas (the true) IP optimum= x2 !!

x’

x1

x2
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