POSTOPTIMALITY ANALYSIS (aka SENSITIVITY ANALYSIS)

Objective: To analyze the optimum solution to see how sensitive this solution is w.r.t. the cost coefficients and the right-hand-side values.

Consider our example:
Maximize $z=5000 X_{1}+4000 X_{2}$
st

$$
\begin{aligned}
& 10 x_{1}+15 x_{2} \leq 150 \\
& 20 x_{1}+10 x_{2} \leq 160 \\
& 30 x_{1}+10 x_{2} \geq 135, \quad \text { all } x_{i} \geq 0 .
\end{aligned}
$$

The optimum solution was $x_{1}{ }^{*}=4.5, x_{2}{ }^{*}=7, z^{*}=50,500$

LINDO Output

RANGES IN WHICH THE BASIS IS UNCHANGED:

MS-Excel Solver Output

Microsoft Excel 12.0 Answer Report
Worksheet: [SUBSTITUTION OOS.xIs]Sheet4
Report Created: 10/15/2008 4:35:07 PM

Target Cell (Max)		
Cell Name	Original Value	
$\$$ A $\$ 4$ Z	50500	50500

Constraints				
Cell	Name	Cell Value	Formula	Status
Slack				
$\$ A \$ 6$ Constraint1	$150 \$ A \$ 6<=150$	Binding	0	
$\$ A \$ 7$ Constraint2	$160 \$ A \$ 7<=160$	Binding	0	
$\$ A \$ 8$ Constraint3	$205 \$ A \$ 8>=135$	Not Binding	70	

Microsoft Excel 12.0 Sensitivity Report Worksheet: [SUBSTITUTION OOS.xIs]Sheet 4 Report Created: 10/15/2008 4:35:07 PM

A. Sensitivity to Cost Coefficients

Suppose we wish to examine variations in c_{1} (the coefficient for x_{1}) from its current value of 5000: say a variation of Δc_{1} units.

Let us say the actual value is $c_{1}{ }^{\prime}=c_{1}+\Delta c_{1}\left(=5000+\Delta c_{11}\right.$ in this case $\left.\ldots\right)$.
We can write

$$
z=c_{1}^{\prime} x_{1}+4000 x_{2} \approx x_{2}=\left(-c_{1}^{\prime} / 4000\right) * x_{1}+(z / 4000)
$$

The slope of the above line is ($-c_{1}^{\prime} / 4000$); currently this slope has a value of $-5000 / 4000=-1.25$

If $c_{1}{ }^{\prime}$ increases the slope becomes more negative, and conversely, if $c_{1}{ }^{\prime}$ decreases the slope becomes less negative.

In other word, the isocost line representing the objective rotates in a clockwise (\approx more negative) or a counter-clockwise (\approx less negative) direction.

Sensitivity to Cost Coefficients (cont'd)

If this rotation is small the optimum solution might be unchanged, but for a sufficiently large tilt the optimum could shift to a neighboring corner point.

Sensitivity to Cost Coefficients (cont'd)

In the above picture, the current value of $c_{1}=5000$ so that the current slope is $-(5000 / 4000)=-1.25$.

The extreme point that is currently optimal (\mathbf{A}) is unchanged as long as the new slope (if c_{1} is actually equal to $C_{1}{ }^{\prime}$) lies between -2 and $-2 / 3$:

$$
\begin{aligned}
& -2 \leq\left(-c_{1}^{\prime} / 4000\right) \leq-2 / 3 \Rightarrow-8000 \leq-c_{1}^{\prime} \leq-8000 / 3 \Rightarrow \\
& 8000 / 3 \leq c_{1}^{\prime} \leq 8000, \text { i.e., } 2667 \leq c_{1}^{\prime} \leq 8000
\end{aligned}
$$

So, for the basis to not change (i.e., for the optimum solution to remain at point A), the max allowable increase is $8000-5000=3000$, and the max allowable decrease is $5000-$ $2667=2333$.

$$
\text { i.e., }-2333 \leq \Delta c_{1} \leq 3000 \text {. }
$$

When the increase exceeds 3000 the optimum shifts to D, and when the decrease exceeds 2333 the optimum shifts to B.

A. Sensitivity to Right-Hand-Side Values

Now suppose we wish to examine variations in b_{1} (the RHS for constraint 1) from its current value of 150 .

Let us say the actual value is $b_{1}{ }^{\prime}=b_{1}+\Delta b_{1}\left(=150+\Delta b_{1}\right.$, in this case $\left.\ldots\right)$.
Consider the line $10 x_{1}+15 x_{2}=b_{1}^{\prime}$
As the value of $b_{1}{ }^{\prime}$ changes, the slope is unchanged but the line moves parallel to itself - either "upward" (if it increases in value) or "downward" (if it decreases in value).

In general, for the case where the RHS value changes, one of several different things could happen:

1. The current optimum point might be unaffected and remain optimum.
2. The current optimum point might not be an extreme point any longer and thus we would have a new optimum (extreme) point, which has
a. either the same set of variables being basic
b. or a different set of variables being basic
3. The entire problem might become infeasible (for a sufficiently large increase or decrease)

1. Optimum is unaffected

© 2020, Jayant Rajgopal

2a. New optimum with same basic variables: previous optimum is not an extreme point (BFS) any more...

© 2020, Jayant Rajgopal

2b. New optimum with different basic variables (previous optimum is infeasible...)

3. Entire problem becomes infeasible!

© 2020, Jayant Rajgopal

A. Sensitivity to Right-Hand-Side Values

Back to our example...
Recall that currently constraint 1 is $10 x_{1}+15 x_{2}=150$
We wish to examine variations in b_{1} (the RHS for constraint 1) from its current value of 150; say the new value is $b_{1}{ }^{\prime}=b_{1}+\Delta b_{1}\left(=150+\Delta b_{1}\right.$ in this case...).

As the value of b_{1} ' changes the slope is unchanged but the line moves parallel to itself - either "upward" (if it increases in value) or "downward" (if it decreases in value).

Sensitivity to the RHS values

In our example, as $b_{1}{ }^{\prime}$ changes the feasible region either expands and admits more points, or shrinks and admits fewer points; in all cases the optimum solution changes as does the optimal objective value.

Sensitivity to RHS Values (cont'd)

The current feasible region is A-B-C-D

© 2020, Jayant Rajgopal

Sensitivity to RHS Values (cont'd)

Note that if

- $b_{1}^{\prime}=120$, the new feasible region is M-L-C-D and the optimum is at M (same basis)
- $b_{1}^{\prime}=80$, the new feasible region is N-C-D and the optimum is at D (different basis)

Similarly, if

- $b_{1}^{\prime}=200$, the new feasible region is J-P-K-C-D and the optimum is at J (same basis)
- $b_{1}^{\prime}=240$, the new feasible region is $\mathrm{Q}-\mathrm{K}-\mathrm{C}-\mathrm{D}$ and the optimum is at Q (different basis)

Note that the current optimal basis is unchanged as long the new RHS satisfies

$$
80 \leq b_{1} \leq 240
$$

That is, since $b_{1}^{\prime}=150+\Delta b_{1}$

$$
-70 \leq \Delta b_{1} \leq 90
$$

Also note that the value of z^{*} changes in all cases (even if the basis is unchanged) and that as b_{1} becomes smaller and smaller, at some point the problem could become infeasible!

Summary

- Changes in c_{j} do not affect feasibility in any way. However, the optimum solution may shift to another extreme point (with a different BFS) for a sufficiently large change. In either case z^{*} will change too.
- Changes in b_{i} affect the shape of the feasible region and big changes could make the feasible region vanish. If the problem is still feasible after the change the optimum may or may not change. If it does change, the value of z^{*} will change too and the new optimum may or may not have a different set of basic variables (i.e., may be at a point of intersection of a different set of lines than before).

LINDO and the Excel Solver provide the range of values for each c_{j} and for each b_{i} in which the basis is unchanged. They do not provide the new values of the objective though...

Ranging Output from LINDO

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE	CURRENT COEF	ALLOWABLE INCREASE	ALLOWABLE DECREASE
X_{1}	5000.000000	3000.000000	2333.333252
X2	4000.000000	3500.000000	1500.000000

RIGHTHAND SIDE RANGES
ROW

2
3
4 CURRENT ALLOWABLE

ALLOWABLE RHS INCREASE DECREASE
150.000000
90.000000
70.000000
$160.000000 \quad 140.000000 \quad 40.000000$
135.00000070 .000000 INFINITY

Ranging Output from Excel-Solver

Microsoft Excel 12.0 Sensitivity Report
Worksheet: [IE1081Example.xIs]Sheet4
Report Created: 10/15/2008 1:22:15 PM

Adjustable Cells

Cell	Name	Final Value	Reduced		
Cost					Objective
:---:					
Coefficient		Allowable			
:---:					
Increase		Allowable			
:---:					
Decrease					

Constraints

Cell	Name	Final Value	Shadow			
Price						Constraint
:---:						
R.H. Side		Allowable				
:---:						
Increase		Allowable				
:---:						
Decrease						

SHADOW PRICES (aka DUAL PRICES)

Definition: The shadow price for constraint i is the rate at which the optimum objective z^{*} improves (i.e., increases for a max problem, or decreases for a min problem) when the RHS for that constraint ($=b_{i}$) increases, provided the basis does not change.

In our example consider b_{1}. Suppose it becomes $b_{1}{ }^{\prime}=b_{1}+\Delta b_{1}$
Suppose the basis does not change so that the optimum is still at the intersection of
-the line $10 x_{1}+15 x_{2}=150+\Delta b_{1 \prime}$ and
-the line $20 x_{1}+10 x_{2}=160$.
This point is given by $x_{1}{ }^{*}=4 \cdot 5-\left(\Delta b_{1} / 20\right)$ and $x_{2}{ }^{*}=7+\left(\Delta b_{1} / 10\right)$.
So the optimal objective is $z^{*}=5000 x_{1}^{*}+4000 x_{2}^{*}$
$=5000\left\{4 \cdot 5-\left(\Delta b_{1} / 20\right)\right\}+4000\left\{7+\left(\Delta b_{1} / 10\right)\right\}=50,500+150 \Delta b_{1}$
Thus the shadow price for the first constraint is $\mathbf{1 5 0}$!

SHADOW / DUAL PRICES (cont’d)

Similarly, the shadow price for the second constraint is equal to 175 .

LINDO (and Excel Solver) provide these dual prices as well:

ROW	SLACK OR SURPLUS	DUALPRICES
2)	0.000000	150.000000
$3)$	0.000000	175.000000
4)	70.000000	0.000000

Signs of Shadow Prices

The signs of the Shadow Prices can always be predicted: suppose π_{i} represents the shadow price for constraint i. Assume that the basis is unchanged for a 1 unit increase in b_{i}. Recall that π_{i} is the improvement in the objective function for this 1 unit increase.

Case 1: Constraint i is $\mathrm{a} \leq$ constraint.
In this case a 1 unit increase in the RHS makes it easier to satisfy, i.e., it loosens the constraint, i.e., expands the feasible region and admits more feasible points. So the new objective cannot get any worse (we have everything we had before plus additional points to choose from!). Thus the improvement is always positive, or more precisely, nonnegative:

Thus π_{i} must be nonnegative ($\geq \mathbf{0}$).
Case 2: Constraint i is $a \geq$ constraint.
In this case a 1 unit increase in the RHS makes it harder to satisfy, i.e., tightens the constraint, i.e., shrinks the feasible region and eliminates some points that are currently feasible. Thus the new objective cannot get any better, (we have fewer points to choose from compared to what w e had before). Thus the "improvement" is always negative, or more precisely, nonpositive:

Thus π_{i} must be nonpositive (≤ 0).
Case 3: Constraint i is an = constraint. In this case π_{i} could take on any sign.

REDUCED COSTS

Recall that the reduced cost for a variable is its entry in Equation 0 in the Simplex tableau - thus the optimum reduced cost value

- for a basic variable is always equal to 0 ,
- for a nonbasic variable - since the tableau is optimal - is always
≥ 0 if we are maximizing
≤ 0 if we are minimizing
Also recall that the reduced cost for a nonbasic variable was defined as the decrease in z for a 1 unit increase in that variable. An alternative interpretation of the optimum reduced cost for a nonbasic variable x_{j} (currently $=0$ at the optimum) is as follows:
- For a max problem it is the required increase in the value of its profit coefficient c_{j} before it can be entered into the basis (and made positive)
- For a min problem it is the required decrease in the value of its cost coefficient c_{j} before it can be entered into the basis (and made positive).

LINDO and Excel Solver provide these as well:

VARIABLE	VALUE	REDUCED COST
X_{1}	4.500000	0.000000
X_{2}	7.000000	0.000000

COMPLEMENTARY SLACKNESS

This is an important concept that applies only to \leq or \geq constraints and it may be stated as follows:

At the optimum:

- if a particular inequality constraint is non-binding (i.e., loose or inactive) so that the corresponding slack/ excess variable is positive, then the shadow price for that constraint must be equal to zero, and
- If the shadow price for some constraint is non-zero, then that constraint must be binding (i.e., tight or active) so that the corresponding slack/excess variable is equal to zero.

Thus

$$
\text { (slack or excess variable for constraint } i) *\left(\pi_{i}\right)=0
$$

Note that it is possible for both the slack/excess as well as the shadow price to be equal to zero - however, it is impossible for both to be non-zero.

DUALITY: The Primal

Consider the following LP in n variables and m constraints (we will call it a "normal" maximization problem):

Program P (The Primal LP)

Associated with this LP is another LP in m variables and n constraints (we call it a "normal" minimization problem):

DUALITY: The Dual

The Dual LP (a "normal" minimization problem) has m variables and n constraints:

Program D (The Dual LP)

Minimize $w=\sum_{i=1}^{m} b_{i} y_{i}$ st	i.e.,	Minimize $w=\boldsymbol{b}^{\boldsymbol{T}} \boldsymbol{y}$ st
$\sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j}$ for $j=1,2, \ldots, n$		$\boldsymbol{A}^{T} \boldsymbol{y} \geq \mathrm{C}$
$y_{i} \geq 0$, for $i=1,2, \ldots, m$		$\boldsymbol{y} \geq 0$

The pair of programs (P and D) are referred to as a (symmetric) Primal-Dual pair of linear programs

The Primal-Dual Pair

Maximize $\quad z=\sum_{p=1}^{n} c_{i} x_{j}$
st
$\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$, for $i=1,2, \ldots, m$
$\quad x_{i} \geq 0$, for $j=1,2, \ldots, n$

$$
\begin{aligned}
& \text { Minimize } w=\sum_{i=1}^{m} b_{i} y_{i} \\
& \text { st } \\
& \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j}, \text { for } j=1,2, \ldots, n \\
& \quad y_{i} \geq 0, \text { for } i=1,2, \ldots, m \\
& \hline
\end{aligned}
$$

PRIMAL-DUAL PAIR: An example

Program P

Program D

\[

\]

$$
\begin{aligned}
& \text { Minimize } w=25 y_{1}+30 y_{2} \\
& \text { st } \\
& 5 y_{1}+y_{2} \geq 50 \\
& \quad y_{1}+3 y_{2} \geq 40 \\
& 12 y_{1}+8 y_{2} \geq 20 \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

PRIMAL-DUAL PAIR: An example

Program D

Program P

Maximize $z=50 x_{1}+40 x_{2}+20 x_{3}$
st

$$
\begin{aligned}
5 x_{1}+x_{2}+12 x_{3} & \leq 25 \\
x_{1}+3 x_{2}+8 x_{3} & \leq 30 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

$$
\left\lvert\, \begin{array}{ll}
\text { Minimize } w=25 y_{1}+30 y_{2} \\
\text { st } \\
5 y_{1}+y_{2} \geq 50 & x_{1} \\
y_{1}+3 y_{2} \geq 40 & x_{2} \\
12 y_{1}+8 y_{2} \geq 20 & x_{3} \\
y_{1}, y_{2} \geq 0 &
\end{array}\right.
$$

In general, every linear program has another linear program associated with it - one is called the PRIMAL and the other is called the DUAL

DUALITY

1) PRIMAL has n variables \Rightarrow DUAL has n constraints.
2) PRIMAL has m constraints \Rightarrow DUAL has m variables.
3) Coefficient matrix for the PRIMAL is $\boldsymbol{A} \Rightarrow$ Coefficient matrix for the DUAL is the transpose of \boldsymbol{A}.
4) RHS vector for the PRIMAL becomes the objective coefficient vector for the DUAL; and the objective coefficient vector for the PRIMAL becomes the RHS vector for the DUAL.

DUALITY

5) IF the PRIMAL is a MAXIMIZATION problem THEN

- First convert any ' \geq ' constraints to ' \leq ' by multiplying through by -1
a) DUAL is a MINIMIZATION problem.
b) Dual variable corresponding to a primal ' $=$ ' constraint is UNRESTRICTED.
c) Dual variable corresponding to a primal ' \leq ' constraint is NONNEGATIVE (≥ 0)
d) Dual constraint corresponding to a nonnegative primal variable is \geq.
e) Dual constraint corresponding to an UNRESTRICTED primal variable is $=$.

6) IF the PRIMAL is a MINIMIZATION problem THEN

- First convert any ' \leq ' constraints to ' \geq ' by multiplying through by -1
a) DUAL is a MAXIMIZATION problem.
b) Dual variable corresponding to a primal ' $=$ ' constraint is UNRESTRICTED.
c) Dual variable corresponding to a primal ' \geq ' constraint is NONNEGATIVE (≥ 0)
d) Dual constraint corresponding to a nonnegative primal variable is \leq.
e) Dual constraint corresponding to an UNRESTRICTED primal variable is $=$.

DUALITY: Further Notes

Always associate variables of one program with a corresponding constraint in the other.

- For a MAX problem, $\mathrm{a} \leq$ constraint is considered "normal"
- For a MIN problem, a \geq constraint is considered "normal"
- A nonnegative variable is considered "normal" for both MAX and MIN

Then
> A "normal" constraint in one problem will give rise to a (normal) nonnegative variable in the other
> Equality constraints always give rise to unrestricted variables
Similarly,
> A "normal" nonnegative variable in one problem will always give rise to a "normal" constraint in the other.
> An unrestricted variable in one will give rise to an equality constraint in the other.

DUALITY: Some Important Results

1. The Dual of the Dual is the Primal
2. Symmetry: It doesn't matter which problem is called the Primal and which one the Dual; typically we refer to the Primal-Dual pair.

Without loss of generality (from (2) above...) let us denote the Primal as the Maximization problem and the Dual as the corresponding Minimization problem, i.e.
(P) Max
$c^{\top} x$
st $\quad \boldsymbol{A x} \leq \boldsymbol{b}$
$x \geq 0$
(D)
$\begin{array}{ll}\text { Min } & \begin{array}{l}\boldsymbol{b}^{\top} \boldsymbol{y} \\ \mathrm{st} \\ \boldsymbol{A}^{\top} \boldsymbol{y} \geq \boldsymbol{c} \\ \boldsymbol{y} \geq 0\end{array}\end{array}$
where $\boldsymbol{c}, \boldsymbol{x} \in \boldsymbol{R}^{\boldsymbol{n}}, \boldsymbol{b}, \boldsymbol{y} \in \boldsymbol{R}^{\boldsymbol{m}}$, and \boldsymbol{A} is a matrix of order $m \times n$

DUALITY: Important Results (cont'd)

3. Weak Duality Theorem: If the vector \boldsymbol{x} is feasible in the Max problem and the vector y is feasible in the corresponding Min problem, then $\boldsymbol{c}^{\top} \boldsymbol{x} \leq \boldsymbol{b}^{\top} \boldsymbol{y}$. That is, for any two vectors that are feasible in their respective problems, the objective for the MAX problem is \leq objective for the MIN problem.
4. Strong Duality Theorem:

If one problem is feasible and has an optimal solution, then the other is also feasible with an optimal solution. Moreover, their optimal values are equal to each other, i.e., $\boldsymbol{c}^{\top} \boldsymbol{x}^{*}=\boldsymbol{b}^{\top} \boldsymbol{y}^{*}$
5. If (P) is unbounded then (D) is infeasible. If (D) is unbounded then (P) is infeasible.
6. If (P) is infeasible, then (D) is either unbounded or infeasible. If (D) is infeasible, then (P) is either unbounded or infeasible.

