# POSTOPTIMALITY ANALYSIS (aka SENSITIVITY ANALYSIS)

<u>**Objective</u>**: To analyze the optimum solution to see how sensitive this solution is w.r.t. the *cost coefficients* and the *right-hand-side* values.</u>

```
Consider our example:

Maximize z = 5000x_1 + 4000x_2

st

10x_1 + 15x_2 \le 150

20x_1 + 10x_2 \le 160

30x_1 + 10x_2 \ge 135, all x_i \ge 0.
```

The optimum solution was  $x_1^* = 4.5$ ,  $x_2^* = 7$ ,  $z^* = 50,500$ 

### LINDO Output

#### LP OPTIMUM FOUND AT STEP 2

#### **OBJECTIVE FUNCTION VALUE**



NO. ITERATIONS= 2

RANGES IN WHICH THE BASIS IS UNCHANGED:



### **MS-Excel Solver Output**

Microsoft Excel 12.0 Answer Report Worksheet: [SUBSTITUTION OOS.xls]Sheet4 Report Created: 10/15/2008 4:35:07 PM

#### Target Cell (Max)

| Cell     | Name | Original Value |       |
|----------|------|----------------|-------|
| \$A\$4 Z |      | 50500          | 50500 |

#### Adjustable Cells

| Cell   | Nam | e Original Value | <b>Final Value</b> |
|--------|-----|------------------|--------------------|
| \$A\$1 | X_1 | 4.5              | 4.5                |
| \$A\$2 | X_2 | 7                | 7                  |

#### Constraints

| Cell   | Name        | Cell Value | Formula      | Status      | Slack |
|--------|-------------|------------|--------------|-------------|-------|
| \$A\$6 | Constraint1 | 150        | )\$A\$6<=150 | Binding     | 0     |
| \$A\$7 | Constraint2 | 160        | )\$A\$7<=160 | Binding     | 0     |
| \$A\$8 | Constraint3 | 205        | 5\$A\$8>=135 | Not Binding | 70    |

Microsoft Excel 12.0 Sensitivity Report Worksheet: [SUBSTITUTION OOS.xls]Sheet4 Report Created: 10/15/2008 4:35:07 PM

| Adjustab                                       | le Cells                                          |                                   | $\bigcirc$               |                                      |                                          |                                            |
|------------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------|--------------------------------------|------------------------------------------|--------------------------------------------|
|                                                |                                                   | Final                             | Reduced                  | Objective                            | Allowable                                | Allowable                                  |
| Cell                                           | Name                                              | Value                             | Cost                     | Coefficient                          | Increase                                 | Decrease                                   |
| \$A\$1                                         | X_1                                               | 4.5                               |                          | 50 0                                 | 3000                                     | 2333.333333                                |
| \$A\$2                                         | X_2                                               | 7                                 |                          | 400                                  | 3500                                     | 1500                                       |
|                                                |                                                   |                                   |                          |                                      |                                          |                                            |
| Constrai                                       | nts                                               |                                   | $\nearrow$               |                                      | Mowable                                  | Allowable                                  |
| Co <u>nstrai</u><br>Cell                       | nts<br>Name                                       | Value                             | Price                    | R.H. Side                            | Allowable<br>Increase                    | Allowable<br>Decrease                      |
| Constrai<br>Cell<br>\$A\$6                     | nts<br>Name<br>Constraint1                        | <b>Value</b> 150                  | Price<br>150             | R.H. Side<br>15                      | Allowable<br>Increase<br>90              | Allowable<br>Decrease<br>70                |
| Constrai<br>Cell<br>\$A\$6<br>\$A\$7           | Name<br>Constraint1<br>Constraint2                | <b>Value</b><br>150<br>160        | Price<br>150<br>175      | R.H. Side<br>15<br>160               | Allowable<br>Increase<br>90<br>140       | Allowable<br>Decrease<br>70<br>40          |
| Constrai<br>Cell<br>\$A\$6<br>\$A\$7<br>\$A\$8 | Name<br>Constraint1<br>Constraint2<br>Constraint3 | <b>Value</b><br>150<br>160<br>205 | Price<br>150<br>175<br>0 | <b>1.H. Side</b><br>15<br>160<br>135 | Allowable<br>Increase<br>90<br>140<br>70 | Allowable<br>Decrease<br>70<br>40<br>1E+30 |

### A. Sensitivity to Cost Coefficients

Suppose we wish to examine variations in  $c_1$  (the coefficient for  $x_1$ ) from its current value of 5000: say a variation of  $\Delta c_1$  units.

Let us say the actual value is  $c_1' = c_1 + \Delta c_1$  (=5000+ $\Delta c_1$ , in this case...).

We can write

 $z = c_1' x_1 + 4000 x_2 \approx x_2 = (-c_1'/4000) * x_1 + (z/4000)$ 

The slope of the above line is  $(-c_1'/4000)$ ; currently this slope has a value of -5000/4000 = -1.25

If  $c_1$  increases the slope becomes more negative, and conversely, if  $c_1$  decreases the slope becomes less negative.

In other word, the isocost line representing the objective rotates in a clockwise ( $\approx$  more negative) or a counter-clockwise ( $\approx$  less negative) direction.

# Sensitivity to Cost Coefficients (cont'd)

If this rotation is small the optimum solution might be unchanged, but for a sufficiently large tilt the optimum could shift to a neighboring corner point.



## Sensitivity to Cost Coefficients (cont'd)

In the above picture, the current value of  $c_1$ =5000 so that the current slope is -(5000/4000) = -1.25.

The extreme point that is currently optimal (**A**) is unchanged as long as the **new** slope (if  $c_1$  is actually equal to  $c_1$ ) lies between -2 and -2/3:

$$-2 \le (-c_1'/4000) \le -2/3 \implies -8000 \le -c_1' \le -8000/3 \implies$$
  
 $8000/3 \le c_1' \le 8000$ , i.e.,  $2667 \le c_1' \le 8000$ 

So, for the basis to not change (i.e., for the optimum solution to remain at point **A**), the max allowable increase is 8000-5000=3000, and the max allowable decrease is 5000 - 2667 = 2333.

i.e.,  $-2333 \le \Delta c_1 \le 3000$ .

When the increase exceeds 3000 the optimum shifts to D, and when the decrease exceeds 2333 the optimum shifts to B.

# A. Sensitivity to Right-Hand-Side Values

Now suppose we wish to examine variations in  $b_1$  (the RHS for constraint 1) from its current value of 150.

Let us say the actual value is  $b_1' = b_1 + \Delta b_1$  (=150+ $\Delta b_1$ , in this case...).

Consider the line  $10x_1 + 15x_2 = b_1'$ 

As the value of  $b_1$  changes, the slope is unchanged but the line moves parallel to itself - either "upward" (if it increases in value) or "downward" (if it decreases in value).

In general, for the case where the RHS value changes, one of several different things could happen:

- 1. The current optimum point might be unaffected and remain optimum.
- 2. The current optimum point might not be an extreme point any longer and thus we would have a new optimum (extreme) point, which has
  - a. either the same set of variables being basic
  - b. or a different set of variables being basic
- 3. The entire problem might become infeasible (for a sufficiently large increase or decrease)

### 1. Optimum is unaffected



2a. New optimum with same basic variables: previous optimum is not an extreme point (BFS) any more...



2b. New optimum with different basic variables (previous optimum is infeasible...)



### 3. Entire problem becomes infeasible!



## A. Sensitivity to Right-Hand-Side Values

Back to our example...

Recall that currently constraint 1 is  $10x_1 + 15x_2 = 150$ 

We wish to examine variations in  $b_1$  (the RHS for constraint 1) from its current value of 150; say the new value is  $b_1' = b_1 + \Delta b_1$  (=150+ $\Delta b_1$ , in this case...).

As the value of  $b_1$  changes the slope is unchanged but the line moves parallel to itself - either "upward" (if it increases in value) or "downward" (if it decreases in value).

### Sensitivity to the RHS values

In our example, as  $b_1$ ' changes the feasible region either expands and admits more points, or shrinks and admits fewer points; in all cases the optimum solution changes as does the optimal objective value.



### Sensitivity to RHS Values (cont'd)

The current feasible region is A-B-C-D



### Sensitivity to RHS Values (cont'd)

Note that if

- $b_1'=120$ , the new feasible region is M-L-C-D and the optimum is at M (same basis)
- $b_1' = 80$ , the new feasible region is N-C-D and the optimum is at D (different basis)

Similarly, if

- $b_1' = 200$ , the new feasible region is J-P-K-C-D and the optimum is at J (same basis)
- $b_1' = 240$ , the new feasible region is Q-K-C-D and the optimum is at Q (different basis)

Note that the current optimal basis is unchanged as long the new RHS satisfies  $80 \le b_1' \le 240$ 

That is, since  $b_1$ '=150+ $\Delta b_1$ 

$$-70 \leq \Delta b_1 \leq 90$$

Also note that the value of  $z^*$  changes in all cases (even if the basis is unchanged) and that as  $b_1$  becomes smaller and smaller, at some point the problem could become infeasible!

### Summary

- Changes in c<sub>j</sub> do not affect feasibility in any way. However, the optimum solution may shift to another extreme point (with a different BFS) for a sufficiently large change. In either case z\* will change too.
- Changes in b<sub>i</sub> affect the shape of the feasible region and big changes could make the feasible region vanish. If the problem is still feasible after the change the optimum may or may not change. If it does change, the value of z\* will change too and the new optimum may or may not have a different set of basic variables (i.e., may be at a point of intersection of a different set of lines than before).

LINDO and the Excel Solver provide the range of values for each  $c_j$  and for each  $b_i$  in which the basis is unchanged. They do not provide the new values of the objective though...

# **Ranging Output from LINDO**

RANGES IN WHICH THE BASIS IS UNCHANGED:

|          | OBJ COEFFIC | IENT RANGES |             |
|----------|-------------|-------------|-------------|
| VARIABLE | CURRENT     | ALLOWABLE   | ALLOWABLE   |
|          | COEF        | INCREASE    | DECREASE    |
| Хı       | 5000.000000 | 3000.000000 | 2333.333252 |
| Х2       | 4000.000000 | 3500.000000 | 1500.000000 |
|          | RIGHTHAND   | SIDE RANGES |             |
| ROW      | CURRENT     | ALLOWABLE   | ALLOWABLE   |
|          | RHS         | INCREASE    | DECREASE    |
| 2        | 150.000000  | 90.000000   | 70.000000   |
| 3        | 160.000000  | 140.000000  | 40.00000    |
| 4        | 135.000000  | 70.000000   | INFINITY    |

### **Ranging Output from Excel-Solver**

Microsoft Excel 12.0 Sensitivity Report Worksheet: [IE1081Example.xls]Sheet4 Report Created: 10/15/2008 1:22:15 PM

#### Adjustable Cells

|            | Final     | Reduced | Objective   | Allowable | Allowable   |
|------------|-----------|---------|-------------|-----------|-------------|
| Cell N     | ame Value | Cost    | Coefficient | Increase  | Decrease    |
| \$A\$1 X_1 | 4.5       | 0       | 5000        | 3000      | 2333.333333 |
| \$A\$2 X_2 | 7         | 0       | 4000        | 3500      | 1500        |

#### Constraints

|        |             | Final | Shadow | Constraint | Allowable | Allowable |
|--------|-------------|-------|--------|------------|-----------|-----------|
| Cell   | Name        | Value | Price  | R.H. Side  | Increase  | Decrease  |
| \$A\$6 | Constraint1 | 150   | 150    | 150        | 90        | 70        |
| \$A\$7 | Constraint2 | 160   | 175    | 160        | 140       | 40        |
| \$A\$8 | Constraint3 | 205   | 0      | 135        | 70        | 1E+30     |

### SHADOW PRICES (aka DUAL PRICES)

<u>**Definition</u></u>: The shadow price for constraint** *i* **is the <u>rate</u> at which the optimum objective z^\*** *improves* **(i.e.,** *in***creases for a <b>max** problem, or **de**creases for a **min** problem) when the RHS for that constraint (= $b_i$ ) increases, <u>provided the basis does not change</u>.</u>

In our example consider  $b_1$ . Suppose it becomes  $b_1'=b_1+\Delta b_1$ 

Suppose the basis does not change so that the optimum is still at the intersection of

•the line  $10x_1 + 15x_2 = 150 + \Delta b_1$ , and

•the line  $20x_1 + 10x_2 = 160$ .

This point is given by  $x_1^* = 4.5 \cdot (\Delta b_1/20)$  and  $x_2^* = 7 + (\Delta b_1/10)$ .

So the optimal objective is  $z^* = 5000x_1^* + 4000x_2^*$ =  $5000\{4.5 - (\Delta b_1/20)\} + 4000\{7 + (\Delta b_1/10)\} = 50,500 + 150\Delta b_1$ 

Thus the **shadow price for the first constraint is 150**!

# SHADOW / DUAL PRICES (cont'd)

Similarly, the shadow price for the second constraint is equal to **175**.

LINDO (and Excel Solver) provide these dual prices as well:

| ROW | SLACK OR SURPLUS | DUAL PRICES |
|-----|------------------|-------------|
| 2)  | 0.000000         | 150.000000  |
| 3)  | 0.000000         | 175.000000  |
| 4)  | 70.00000         | 0.000000    |

# **Signs of Shadow Prices**

The signs of the Shadow Prices can always be predicted: suppose  $\pi_i$  represents the shadow price for constraint *i*. Assume that the basis is unchanged for a 1 unit increase in  $b_i$ . Recall that  $\pi_i$  is the <u>improvement</u> in the objective function for this 1 unit increase.

#### <u>Case 1</u>: Constraint *i* is a $\leq$ constraint.

In this case a 1 unit increase in the RHS makes it easier to satisfy, i.e., it **loosens** the constraint, i.e., **expands** the feasible region and admits more feasible points. So the new objective <u>cannot</u> <u>get any worse</u> (we have everything we had before plus additional points to choose from!). Thus the improvement is always positive, or more precisely, nonnegative:

#### Thus $\pi_i$ must be nonnegative ( $\geq 0$ ).

#### <u>Case 2</u>: Constraint *i* is a $\geq$ constraint.

In this case a 1 unit increase in the RHS makes it harder to satisfy, i.e., **tightens** the constraint, i.e., **shrinks** the feasible region and eliminates some points that are currently feasible. Thus the new objective <u>cannot get any better</u>, (we have fewer points to choose from compared to what w e had before). Thus the "improvement" is always negative, or more precisely, nonpositive:

#### Thus $\pi_i$ must be nonpositive ( $\leq 0$ ).

<u>Case 3</u>: Constraint *i* is an = constraint. In this case  $\pi_i$  could take on any sign.

### **REDUCED COSTS**

Recall that the reduced cost for a variable is its entry in Equation 0 in the Simplex tableau - thus the <u>optimum</u> reduced cost value

- for a basic variable is always equal to 0,
- for a nonbasic variable since the tableau is optimal is always

 $\geq 0$  if we are maximizing

 $\leq$  0 if we are minimizing

Also recall that the reduced cost for a nonbasic variable was defined as the decrease in *z* for a 1 unit increase in that variable. An alternative interpretation of the **optimum** reduced cost for a nonbasic variable  $x_i$  (currently =0 at the optimum) is as follows:

- For a max problem it is the required increase in the value of its profit coefficient c<sub>i</sub> before it can be entered into the basis (and made positive)
- For a min problem it is the required decrease in the value of its cost coefficient c<sub>j</sub> before it can be entered into the basis (and made positive).

LINDO and Excel Solver provide these as well:

| VARIABLE | VALUE    | <b>REDUCED COST</b> |
|----------|----------|---------------------|
| Xı       | 4.500000 | 0.000000            |
| Х2       | 7.000000 | 0.000000            |

## **COMPLEMENTARY SLACKNESS**

This is an important concept that applies only to  $\leq$  or  $\geq$  constraints and it may be stated as follows:

At the optimum:

- if a particular inequality constraint is non-binding (i.e., loose or inactive) so that the corresponding slack/ excess variable is positive, then the shadow price for that constraint must be equal to zero, and
- If the shadow price for some constraint is non-zero, then that constraint must be binding (i.e., tight or active) so that the corresponding slack/excess variable is equal to zero.

Thus

(slack or excess variable for constraint *i*) \* ( $\pi_i$ ) = 0

Note that it is possible for both the slack/excess as well as the shadow price to be equal to zero - however, it is <u>impossible for both to be non-zero</u>.

### **DUALITY: The Primal**

Consider the following LP in *n* variables and *m* constraints (we will call it a "normal" maximization problem):

<u>Program P</u> (The **Primal** LP)

Maximize  $z = \sum_{j=1}^{n} c_j x_j$ Maximize  $z = c^T x$ sti.e.,st $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$  for i = 1, 2, ..., m $Ax \leq b$  $x_j \geq 0$ , for j = 1, 2, ..., n $x \geq 0$ 

Associated with this LP is another LP in *m* variables and *n* constraints (we call it a "normal" minimization problem):

### **DUALITY: The Dual**

The Dual LP (a "normal" minimization problem) has *m* variables and *n* constraints :

<u>Program D</u> (The **Dual** LP)

Minimize  $w = \sum_{i=1}^{m} b_i y_i$ Minimize  $w = \boldsymbol{b}^T \boldsymbol{y}$ sti.e.,st $\sum_{i=1}^{m} a_{ij} y_i \ge c_j$  for j = 1, 2, ..., n $\boldsymbol{A}^T \boldsymbol{y} \ge \boldsymbol{c}$  $y_i \ge 0$ , for i = 1, 2, ..., m $\boldsymbol{y} \ge \boldsymbol{0}$ 

The pair of programs (P and D) are referred to as a (symmetric) **Primal-Dual pair** of linear programs

### **The Primal-Dual Pair**

Maximize  $z = \sum_{j=1}^{n} c_j x_j$ st  $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ , for i = 1, 2, ..., m $x_j \ge 0$ , for j = 1, 2, ..., n

Minimize 
$$w = \sum_{i=1}^{m} b_i y_i$$
  
st  
 $\sum_{i=1}^{m} a_{ij} y_i \ge c_j$ , for  $j = 1, 2, ..., n$   
 $y_i \ge 0$ , for  $i = 1, 2, ..., m$ 

### **PRIMAL-DUAL PAIR: An example**

### Program P

### Program D

```
Maximize z = 50x_1 + 40x_2 + 20x_3

st

5x_1 + x_2 + 12x_3 \le 25 \quad y_1

x_1 + 3x_2 + 8x_3 \le 30 \quad y_2

x_1, x_2, x_3 \ge 0
```

```
Minimize w = 25y_1 + 30y_2

st

5y_1 + y_2 \ge 50

y_1 + 3y_2 \ge 40

12y_1 + 8y_2 \ge 20

y_1, y_2 \ge 0
```

### **PRIMAL-DUAL PAIR: An example**

### Program D

### Program P

Maximize 
$$z = 50x_1 + 40x_2 + 20x_3$$
  
st  
 $5x_1 + x_2 + 12x_3 \le 25$   
 $x_1 + 3x_2 + 8x_3 \le 30$   
 $x_1, x_2, x_3 \ge 0$   
Minimize  $w = 25y_1 + 30y_2$   
st  
 $5y_1 + y_2 \ge 50$   $x_1$   
 $y_1 + 3y_2 \ge 40$   $x_2$   
 $12y_1 + 8y_2 \ge 20$   
 $y_1, y_2 \ge 0$ 

In general, **every** linear program has another linear program associated with it – one is called the **PRIMAL** and the other is called the **DUAL** 

### DUALITY

- 1) PRIMAL has *n* variables  $\Rightarrow$  DUAL has *n* constraints.
- 2) PRIMAL has *m* constraints  $\Rightarrow$  DUAL has *m* variables.
- 3) Coefficient matrix for the PRIMAL is  $A \Rightarrow$  Coefficient matrix for the DUAL is the transpose of A.
- 4) RHS vector for the PRIMAL becomes the objective coefficient vector for the DUAL; and the objective coefficient vector for the PRIMAL becomes the RHS vector for the DUAL.

### DUALITY

### 5) **IF** the PRIMAL is a MAXIMIZATION problem **THEN**

- First convert any '≥' constraints to '≤' by multiplying through by -1
- a) DUAL is a MINIMIZATION problem.
- b) Dual variable corresponding to a primal '=' constraint is UNRESTRICTED.
- c) Dual variable corresponding to a primal  $\leq$  constraint is NONNEGATIVE ( $\geq$ 0)
- d) Dual constraint corresponding to a nonnegative primal variable is  $\geq$ .
- e) Dual constraint corresponding to an UNRESTRICTED primal variable is =.

### 6) IF the PRIMAL is a MINIMIZATION problem THEN

- First convert any '≤' constraints to '≥' by multiplying through by -1
- a) DUAL is a MAXIMIZATION problem.
- b) Dual variable corresponding to a primal '=' constraint is UNRESTRICTED.
- c) Dual variable corresponding to a primal ' $\geq$ ' constraint is NONNEGATIVE ( $\geq 0$ )
- d) Dual constraint corresponding to a nonnegative primal variable is  $\leq$ .
- e) Dual constraint corresponding to an UNRESTRICTED primal variable is =.

### **DUALITY: Further Notes**

Always associate variables of one program with a corresponding constraint in the other.

- For a MAX problem, a ≤ constraint is considered "normal"
- For a MIN problem, a ≥ constraint is considered "normal"
- A nonnegative variable is considered "normal" for both MAX and MIN

#### Then

- A "normal" constraint in one problem will give rise to a (normal) nonnegative variable in the other
- > Equality constraints always give rise to unrestricted variables

Similarly,

- A "normal" nonnegative variable in one problem will always give rise to a "normal" constraint in the other.
- > An unrestricted variable in one will give rise to an equality constraint in the other.

### **DUALITY: Some Important Results**

- 1. The Dual of the Dual is the Primal
- 2. Symmetry: It doesn't matter which problem is called the Primal and which one the Dual; typically we refer to the *Primal-Dual pair*.

Without loss of generality (from (2) above...) let us denote the Primal as the Maximization problem and the Dual as the corresponding Minimization problem, i.e.

where  $c, x \in \mathbb{R}^n$ ,  $b, y \in \mathbb{R}^m$ , and A is a matrix of order  $m \times n$ 

# DUALITY: Important Results (cont'd)

3. <u>Weak Duality Theorem</u>: If the vector x is feasible in the Max problem and the vector y is feasible in the corresponding Min problem, then  $c^Tx \le b^Ty$ . That is, for any two vectors that are *feasible* in their respective problems, the objective for the MAX problem is  $\le$  objective for the MIN problem.

### 4. <u>Strong Duality Theorem</u>:

If one problem is feasible and has an optimal solution, then the other is also feasible with an optimal solution. Moreover, their optimal values are equal to each other, i.e.,  $c^Tx^* = b^Ty^*$ 

- 5. If (P) is unbounded then (D) is infeasible. If (D) is unbounded then (P) is infeasible.
- 6. If (P) is infeasible, then (D) is **either** unbounded **or** infeasible. If (D) is infeasible, then (P) is **either** unbounded **or** infeasible.