I.E. 2001 OPERATIONS RESEARCH

(Solutions to Assignment 9)
Question 1 (Q1, p. 502)
Recall that in HW 8 we had defined
Define $x_{j}=1$ if player j starts; $j=1,2,3,4,5,6,7$
0 otherwise.

We have the following additional constraints now:

1. $x_{3}+x_{6} \leq 1$
(if 3 starts, 6 cannot; i.e., $x_{3}=1 \Rightarrow x_{6}=0$)
2.1 $x_{1} \leq \mathrm{M} y \quad$ (if 1 starts, 4 and 5 must start. Note that this is equivalent to saying that
$2.22-x_{4}-x_{5} \leq \mathrm{M}(1-y)$ if $x_{1}=1$, then x_{4}, x_{5} are both $=1$, i.e., if $x_{1}>0 \Rightarrow x_{4}+x_{5} \geq 2$, i.e, $2-x_{4}-x_{5} \leq 0$
This gets us into the format of " $g_{l}(\boldsymbol{x})>0 \Rightarrow g_{l}(\boldsymbol{x}) \leq 0$ " to use the "trick" we saw in class, where $g_{I}(\boldsymbol{x})=x_{1}$ and $g_{I}(\boldsymbol{x})=2-x_{4}-x_{5}$.

Thus both $x_{1}>0$ and $2-x_{4}-x_{5}>0$ is impossible, i.e,
at least one of $x_{l} \leq 0$ and $2-x_{4}-x_{5} \leq 0$) must hold.
So we define $y=0$ or 1
Then (2.1) states that if $y=0$ then $x_{l} \leq 0$, i.e., $x_{l}=0$ (and we don't care about $x_{4}, x_{5} \ldots$)
while (10) states that if $y=1$ then $2-x_{4}-x_{5} \leq 0$, i.e., $x_{4}+x_{5} \geq 2$, i.e., $x_{4}=x_{5}=1$
Alternatively, we could also express this constraint via
2. $x_{4} \geq x_{1}, \quad x_{5} \geq x_{1}$
or
2. $x_{4}+x_{5} \geq 2 x_{1}$

Question 2 (Q14, p. 503-504)
Define $y_{j}=1$ if disk j is stored, 0 otherwise; $j=1,2, \ldots, 10$

Part (1)

Then the formulation is
Minimize $\mathrm{Z}=3 y_{1}+5 y_{2}+y_{3}+2 y_{4}+y_{5}+4 y_{6}+3 y_{7}+y_{8}+2 y_{9}+2 y_{10} \quad$ (total storage) st

$$
\begin{array}{ll}
y_{1}+y_{2}+y_{4}+y_{5}+y_{8}+y_{9} \geq 1 & \text { (file } 1 \text { must be stored) } \\
y_{1}+y_{3} \geq 1 & \text { (file } 2 \text { must be stored) } \\
y_{2}+y_{5}+y_{7}+y_{10} \geq 1 & \text { (file } 3 \text { must be stored) } \\
y_{3}+y_{6}+y_{8} \geq 1 & \text { (file } 4 \text { must be stored) } \\
y_{1}+y_{2}+y_{4}+y_{6}+y_{7}+y_{9}+y_{10} \geq 1 & \text { (file } 5 \text { must be stored) }
\end{array}
$$

$$
\text { All } y_{j}=0 \text { or } 1 \text {. }
$$

Note: This is an example of a set covering problem

Excel yielded the optimum solution $y_{3}=y_{5}=y_{10}=1$ and all other $y_{j}=0, Z^{*}=4$

Part (2)

Here we want that if either y_{3} or y_{5} (or both) are equal to 1 , then y_{2} MUST be 1
So we could add $y_{2} \geq y_{3}$ and $y_{2} \geq y_{5}$ to the problem constraints.
With the additional constraint the optimum solution has $y_{l}=y_{5}=y_{8}=1$ and all other $y_{j}=0, \mathrm{Z}^{*}=5$
Question 3 (Q43, p511)
First note that the fixed and variable costs are as follows:

		Variable Costs (\$ Billion) $=500,000$ cars * \$/car		
Plant	Fixed Cost (\$ Billion)	Taurus	Lincoln	Escort
1	7	6	8	9
2	6	7.5	9	5.5
3	4	8.5	9.5	6
4	2	9.5	11	7

Define $x_{i j}=1$ if Plant $i(i=1,2,3,4)$ is used to produce type $j(j=1,2,3)$ cars (Type $1=$ Tauras, etc.); 0 otherwise. Also define $y_{i}=1$ if Plant i is used to produce any type of car; 0 otherwise (note that one plant will definitely not be used). Then expressing the objective in billions of dollars we have
$\operatorname{Min} 7 y_{1}+6 y_{2}+4 y_{3}+2 y_{4}+6 x_{11}+8 x_{12}+4.5 x_{13}+7.5 x_{21}+9 x_{22}+5.5 x_{23}+8.5 x_{31}+9.5 x_{32}+6 x_{33}+9.5 x_{41}+11 x_{42}+7 x_{43}$
st
A.

- $x_{11}+x_{12}+x_{13} \leq 1$ (Plant 1 produces no more than one car type)
- $x_{21}+x_{22}+x_{23} \leq 1$ (Plant 2 produces no more than one car type)
- $x_{31}+x_{32}+x_{33} \leq 1$ (Plant 3 produces no more than one car type)
- $x_{41}+x_{42}+x_{43} \leq 1$ (Plant 4 produces no more than one car type)
B.
- $x_{11}+x_{21}+x_{31}+x_{41}=1$ (Car type 1 is produced at exactly one plant)
- $x_{12}+x_{22}+x_{32}+x_{42}=1$ (Car type 2 is produced at exactly one plant)
- $x_{13}+x_{23}+x_{33}+x_{43}=1$ (Car type 3 is produced at exactly one plant)
C.
- $x_{11} \leq y_{1}, x_{12} \leq y_{1}, x_{13} \leq y_{1}$ (If Plant 1 is not used at all, then it produces nothing)
- $x_{21} \leq y_{2}, x_{22} \leq y_{2}, x_{23} \leq y_{2}$ (If Plant 2 is not used at all, then it produces nothing)
- $x_{31} \leq y_{3}, x_{32} \leq y_{3}, x_{33} \leq y_{3}$ (If Plant 3 is not used at all, then it produces nothing)
- $x_{41} \leq y_{4}, x_{42} \leq y_{4}, x_{43} \leq y_{4}$ (If Plant 4 is not used at all, then it produces nothing)

NOTE: You could also combine A and C via $x_{11}+x_{12}+x_{13} \leq y_{1}, x_{21}+x_{22}+x_{23} \leq y_{2}$ etc.
D.

- $y_{3}+y_{4}-1 \leq \mathrm{M}(1-z)$
- 1- $y_{l} \leq \mathrm{M} z$

The last two constraint arises from "If 3 and 4 are used then 1 must be used." That is, "If $y_{3}+y_{4} \geq 2$, then $y_{l} \geq 1$,"
i.e., if $y_{3}+y_{4}>1$ then $y_{l} \geq 1$,
i.e., both $y_{3}+y_{4}>1$ and $y_{1}<1$ is not possible,
i.e., at least one of $y_{3}+y_{4}-1 \leq 0$ or $1-y_{1} \leq 0$ must hold.

This yields the last two constraints.

- Alternatively, we could also express this last condition via $y_{l} \geq y_{3}+y_{4}-1$ (so if both $y_{3} \& y_{4}$ are $=1$, then the RHS is $=1$ so that y_{l} is also $=1$, if not the RHS is $=0$ or -1 , so that y_{l} could be 0 or 1)

All variables $\in(0,1)$

Alternative (and somewhat more complex...) Formulation:
We could also dispense with the y_{i} variables altogether by pulling in the fixed cost for each plant in each year into the operating costs and altering the last two sets of constraints as follows:

Min $13 x_{11}+15 x_{12}+11.5 x_{13}+13.5 x_{21}+15 x_{22}+11.5 x_{23}+12.5 x_{31}+13.5 x_{32}+10 x_{33}+11.5 x_{41}+13 x_{42}+9 x_{43}$
st
Same constraints as in A. and B. above, and replace C. and D. with

- $x_{31}+x_{32}+x_{33}+x_{41}+x_{42}+x_{43}-1 \leq \mathrm{M} z$
- $x_{11}+x_{12}+x_{13}-1 \geq-\mathrm{M}(1-z)$

All variables $=0$ or 1 .
Note that A. and B. ensure that exactly 3 of the four plants are used to produce 3 different cars; so the fixed cost will definitely be counted in the objective only once for each of the 3 plants that are used.

The last set of constraints simply ensure that if one of $\left(x_{31}, x_{32}, x_{33}\right)$ and one of $\left(x_{41}, x_{42}, x_{43}\right)$ are equal to $\mathbf{1}$ (note that the constraints in A preclude more than one in each set from being equal to $1 \ldots$..), then one of $\left(x_{11}, x_{12}, x_{13}\right)$ is also equal to 1 .

The optimum solution has $y_{1}=y_{3}=y_{4}=1 ; x_{11}=x_{32}=x_{43}=1$ with an objective function value $=35.5$

Question 4

Define $y_{j}=1$ if location j is selected and 0 otherwise, $\mathrm{j}=1,2, \ldots, M$
and $\quad x_{i j}=1$ if district i is assigned to the firehouse at location $j, i=1,2, \ldots, N, j=1,2, \ldots, M$
The constraints are as follows:

$$
\sum_{j=1}^{M} x_{i j}=1, \quad i=1,2, \ldots, N \quad \text { (every district is assigned to exactly one firehouse) }
$$

2) $\quad \sum_{i=1}^{N} x_{i j} \leq y_{j} N, \quad j=1,2, \ldots, M$ (no district is assigned to an unused location) (note that the sum of the $x_{i j}$ over all i can obviously never exceed N)
3) $\quad \sum_{i=1}^{N} p_{i} x_{i j}=s_{j}, \quad j=1,2, \ldots, M$ (total population served by location j)
4)

$$
\sum_{j=1}^{M} f_{j}\left(s_{j}\right) \leq B \quad \text { (budgetary constraint) }
$$

(Note that 3 and 4 could be combined and s_{j} eliminated...)
5)
$y_{1}+y_{2} \geq 2 z_{1}$
6) $y_{3}+y_{4} \geq 2 z_{2}$
7) $z_{1}+z_{2}=1($ or $\geq 1)$
(5,6 and 7 together ensure that at least one of $y_{1}+y_{2} \geq 2$ and $y_{3}+y_{4} \geq 2$ is satisfied)
Suppose we define d_{i} as the distance to district i from its assigned firehouse and $D=\operatorname{Max}_{i}\left(d_{i}\right)$
8) $d_{i}=\sum_{j=1}^{M} d_{i j} x_{i j}$
(CASE 1)

8') $\quad D \geq \sum_{j=1}^{M} d_{i j} x_{i j}, \quad i=1,2, \ldots, N$
(CASE 2)
9) $\quad x_{i j} y_{j}, z_{1}, z_{2}$ all 0 or 1 for $i=1,2, \ldots, N, \mathrm{j}=1,2, \ldots, M$.

The objective is to (case 1) Minimize $\left(\Sigma d_{i}\right) / \boldsymbol{N}$, or (case 2) Minimize D

