(Solutions to Assignment 2)

## Question 5, p. 114

Define $A=$ Dollars invested in investment A at time 0
$B=$ Dollars invested in investment B at time 1
$C=$ Dollars invested in investment C at time 2
$T_{j}=$ Dollars invested in T-bills at time $j, j=0,1,2$
NOTE: Time $t$ refers to end of year $t$


Maximize $1.2 C+1.1 T_{2}$

```
st \(\quad T_{0}+A=100\)
    \(T_{1}+B=0.1 A+1.1 T_{0}\)
    \(T_{2}+C=1.3 A+1.6 B+1.1 T_{l}\)
        \(A \leq 50, B \leq 50, C \leq 50\)
```

(Maximize Cash at time 3)
(Investment at time $0=$ cash available now)
(Investment at time $1=$ cash available end of yr. 1)
(Investment at time $2=$ cash available end of yr. 2)
(Allowed limits on investments)
$A, B, C, T_{1}, T_{2}, T_{3} \geq 0$
NOTE: The " $=$ " in the first three constraints can also be replaced with " $\leq$ " - WHY?!

## Question 13, p. 115

Define $W_{l}=$ pounds of wheat used in the amount of Feed 1produced and sold
$A_{l}=$ pounds of alfalfa used in the amount of Feed 1 produced and sold
$W_{2}=$ pounds of wheat used in the amount of Feed 2 produced and sold $A_{2}=$ pounds of alfalfa used in the amount of Feed 2 produced and sold

Maximize Profit $=1.5\left(W_{1}+A_{1}\right)+1.3\left(W_{2}+A_{2}\right)-0.5\left(W_{1}+W_{2}\right)-0.4\left(A_{1}+A_{2}\right)$
$\left(=W_{l}+1.1 A_{1}+0.8 W_{2}+0.9 A_{2}\right)$
st

$$
\begin{array}{ll}
W_{1}+W_{2} \leq 1000 & (\text { Max. Wheat purchase possible }) \\
A_{1}+A_{2} \leq 800 & \text { (Max. Alfalfa purchase possible) }
\end{array}
$$

$$
W_{l} /\left(A_{l}+W_{l}\right) \geq 0.8 \text {, i.e., } 0.2 W_{l}-0.8 A_{l} \geq 0 \quad \text { (Wheat } \% \text { Req. in Feed 1) }
$$

$$
A_{2} /\left(A_{2}+W_{2}\right) \geq 0.6 \text {, i.e., } 0.4 A_{2}-0.6 W_{2} \geq 0 \quad \text { (Alfalfa } \% \text { Req. in Feed 2) }
$$

$$
A_{1}, A_{2}, W_{1}, W_{2} \geq 0
$$

## Question 34, p. 118

Let $L_{t}=$ No. of air conditioners made in LA in month $t, t=1,2,3$
$N_{t}=$ No. of air conditioners made in NY in month $t, t=1,2,3$
$I_{t}=$ No. of air conditioners in inventory at the end of month $t, t=1,2,3$
$\operatorname{Min} 400 L_{l}+400 L_{2}+400 L_{3}+350 N_{l}+350 N_{2}+350 N_{3}+100 I_{l}+100 I_{2}+100 I_{3}$
st
$L_{1}+N_{l}+200-300=I_{1}$, i.e., $L_{l}+N_{l}-I_{l}=100$
$L_{2}+N_{2}+I_{1}-400=I_{2}$, i.e., $L_{2}+N_{2}+I_{1}-I_{2}=400$
(period 1 inventory balance)
$L_{3}+N_{3}+I_{2}-500=I_{3}$, i.e., $L_{3}+N_{3}+I_{2}-I_{3}=500$
(period 2 inventory balance)
(period 3 inventory balance)
$1.5 L_{t} \leq 420$ for $t=1,2,3 \quad$ (skilled labor availability in LA in each month)
$2 N_{t} \leq 420$ for $t=1,2,3 \quad$ (skilled labor availability in NY in each month)
All variables nonnegative.

## Question 4, p. 98

Consider the following schematic of the process:


An alternative (and somewhat more complex...) formulation would be one where you could have separate variables for the amount of P1 that is converted to P2 and sold and for the amount of P 1 that is converted to P 2 and then converted to P 3 :
$R$ lbs.


Define $R=\mathrm{lbs}$ of raw material used
$X_{12 s}=$ Ounces of Product 1 processed into Product 2 and sold
$X_{12 p 3}=$ Ounces of Product 1 processed into Product 2 and then into Product 3
Then a correct formulation is

$$
\begin{align*}
& \text { Max } 10 S_{1}+20 S_{2}+20 X_{12 s}+30 S_{3}-(25 R+1 R)-\left(1 X_{12 s}+1 X_{12 p 3}+2 X_{13}\right)-\left(6 X_{23}+6 X_{12 p 3}\right) \\
& \quad=10 S_{1}+20 S_{2}+19 X_{12 s}+30 S_{3}-26 R-7 X_{12 p 3}-2 X_{13}-6 X_{23} \text { (Profits) } \tag{Profits}
\end{align*}
$$

st

$$
\begin{array}{ll}
S_{1} \leq 5,000, S_{2}+X_{12 s} \leq 5,000, S_{3} \leq 3,000 & \text { (maximum sales potential) } \\
2 R+2 X_{12 s}+2 X_{12 p 3}+3 X_{13}+X_{23} \leq 25,000 & \text { (labor availability) } \\
3 R=S_{1}+X_{12 s}+X_{12 p 3}+X_{13} & \text { (material balance for Prod 1) } \\
R=S_{2}+X_{23} & \text { (material balance for Prod 2) } \\
S_{3}=X_{13}+X_{12 p 3} & \text { (material balance for Prod 3) }
\end{array}
$$

All variables nonnegative

## Question 50, p. 121-122

The problem may be represented schematically as follows:


Let $\quad X_{i j}=$ Tons of City $i$ waste that is sent to Incinerator $j ; i=1,2 ; j=1,2$.
$Y_{j k}=$ Tons of debris sent from Incinerator $j$ to Landfill $k ; j=1,2 ; k=1,2$.
Then the appropriate LP is

$$
\begin{array}{ll}
\text { Min } \mathrm{Z}=40\left(X_{11}+X_{21}\right)+30\left(X_{12}+X_{22}\right)+ & \\
& 3\left[30 X_{11}+5 X_{12}+36 X_{21}+42 X_{22}+5 Y_{11}+8 Y_{12}+9 Y_{21}+6 Y_{22}\right] \\
\text { s.t. } & X_{11}+X_{12}=500 \\
& X_{21}+X_{22}=400
\end{array} \quad \text { (CITY 1 WASTE MATERIAL BALANCE) }
$$

