I.E. 2001 OPERATIONS RESEARCH (Spring 2020)

(Solutions to Assignment 1)

Question 1

Define R = no. of units of the Orange model to be produced over the next quarter T = no. of units of the Tangerine model to be produced over the next quarter

Maximize Revenue = $900R + 600T$		
st	$2R + T \le 20,000$	(Limit on disk drives available)
	$4R + T \le 32,000$	(Limit on hours of assembly time available)
	$2R + 7T \le 88,000$	(Limit on hours of QA time available)
	$R, T \ge 0$	

<u>NOTE</u>: This formulation assumes that all the computers produced can be sold. Also, if you wanted to be more precise, you could restrict R and T to be integers (since you can't make a fractional number of computers...) – this would then make it an **integer** linear program!

Question 2

Define X_1 = no. of hours per day that we run Line 1 X_2 = no. of hours per day that we run Line 2

Minimize $Cost = 4000X_1 + 1000X_2$

st $3X_1 + X_2 \ge 10$ (Minimum requirements for A) $X_1 + X_2 \ge 5$ (Minimum requirements for B) $X_1 \ge 3$ (Minimum requirements for C) $X_1, X_2 \ge 0$

Question 3

Define W_i = Tons of waste from factory *i* that are to be processed, *i*=1,2,3

Minimize Processing Costs = $15W_1 + 10W_2 + 20W_3$ st $0.10W_1 + 0.20W_2 + 0.40W_3 \ge 30$ (Required total reduction of Pollutant A) $0.45W_1 + 0.25W_2 + 0.30W_3 \ge 40$ (Required total reduction of Pollutant B) $W_1, W_2, W_3 \ge 0$

Question 4

Define C_1 = Acres of farm 1 devoted to corn W_1 = Acres of farm 1 devoted to wheat C_2 = Acres of farm 2 devoted to corn W_2 = Acres of farm 2 devoted to wheat

Minimize Costs =
$$100C_1 + 90W_1 + 120C_2 + 80W_2$$

st $C_1 + W_1 \leq 100$ (Land available: Farm 1)
 $C_2 + W_2 \leq 100$ (Land available: Farm 2)
 $500C_1 + 650C_2 \geq 7,000$ (Corn Requirement)
 $400W_1 + 350W_2 \geq 11,000$ (Wheat Requirement)
 $C_1, W_1, C_2, W_2 \geq 0$

NOTE: You could also use "=" for the last two constraints – the solution would be the same (WHY?!)