I.E. 2001 OPERATIONS RESEARCH

(Spring 2020)
(Solutions to Assignment 1)

Question 1

Define $R=$ no. of units of the Orange model to be produced over the next quarter $T=$ no. of units of the Tangerine model to be produced over the next quarter

Maximize Revenue $=900 R+600 T$

st	$2 R+T \leq 20,000$	(Limit on disk drives available)
$4 R+T \leq 32,000$	(Limit on hours of assembly time available)	
$2 R+7 T \leq 88,000$	(Limit on hours of QA time available)	
$R, T \geq 0$		

NOTE: This formulation assumes that all the computers produced can be sold. Also, if you wanted to be more precise, you could restrict R and T to be integers (since you can't make a fractional number of computers...) - this would then make it an integer linear program!

Question 2

Define $X_{1}=$ no. of hours per day that we run Line 1
$X_{2}=$ no. of hours per day that we run Line 2
Minimize Cost $=4000 X_{1}+1000 X_{2}$
st $\quad 3 X_{1}+X_{2} \geq 10 \quad$ (Minimum requirements for A)
$X_{1}+X_{2} \geq 5 \quad$ (Minimum requirements for B)
$X_{1} \quad \geq 3 \quad$ (Minimum requirements for C) $X_{1}, X_{2} \geq 0$

Question 3

Define $W_{i}=$ Tons of waste from factory i that are to be processed, $i=1,2,3$
Minimize Processing Costs $=15 W_{l}+10 W_{2}+20 W_{3}$
st

$$
\begin{array}{ll}
0.10 W_{1}+0.20 W_{2}+0.40 W_{3} \geq 30 & \text { (Required total reduction of Pollutant A) } \\
0.45 W_{1}+0.25 W_{2}+0.30 W_{3} \geq 40 & \text { (Required total reduction of Pollutant B) }
\end{array}
$$

$$
W_{l}, W_{2}, W_{3} \geq 0
$$

Question 4

Define $C_{l}=$ Acres of farm 1 devoted to corn
$W_{l}=$ Acres of farm 1 devoted to wheat
$C_{2}=$ Acres of farm 2 devoted to corn
$W_{2}=$ Acres of farm 2 devoted to wheat
Minimize Costs $=100 C_{l}+90 W_{l}+120 C_{2}+80 W_{2}$

