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CHAPTER 10
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Abstract

Potential energy surfaces (PESs) form a central concept in the theoretical description of
molecular structures, properties, and reactivities. In this chapter, recent advancements
and commonly used techniques for exploring PESs are surveyed in the context of
electronic structure methods. Specifically, minimization, transition state optimization,
and reaction path following are discussed. In addition to reviewing current progress in
these areas, this chapter offers a number of practical discussions regarding minimization,
transition state optimization, and reaction path following, including suggestions for
overcoming common pitfalls.

10.1 INTRODUCTION

Potential energy surfaces (PESs) play a central role in computational chemistry. The
study of most chemical processes and properties by computational chemists begins with
the optimization of one or more structures to find minima on PESs, which correspond to
equilibrium geometries. To obtain reaction barriers and to calculate reaction rates using
transition state theory (TST) [1,2], it is necessary to locate first-order saddle points on the
PES, which correspond to transition states (TS). Often one needs to confirm that a TS lies
on a pathway that actually connects the minima corresponding to reactants and products
(i.e. a TS that is involved in the chemical process under investigation). This goal is
typically accomplished by following the steepest descent reaction pathway downhill in
each direction from the TS to the rcactant minimum and to the product minimum. The
reaction path can also be used in the computation of reaction rates using more
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sophisticated models such as variational transition state theory (VTST) and reaction path
Hamiltonians (RPH) [3-7].

In this chapter, standard algorithms for these calculations—minimization, TS
optimization, and reaction path following—are discussed. It should be noted that a
number of reviews on these and related methods have appeared in the literature [8-24],
including an excellent book on PESs and methods for exploring their landscapes by
Wales [25]. Although an exhaustive review of the methods available to computational
chemists would be of historical value, our presentation here, heeding to space limitations
and a desire to maintain readability, focuses on algorithms commonly used in studies
presented in the current literature. Nevertheless, approaches that are less often used in
modern practice are included where they provide a map of methodology evolution and
are pedagogically useful.

In the next section, essential background material is provided. In Section 10.3, methods
for minimization are discussed followed by TS optimization methods in Section 10.4.
Reaction path following is considered in Section 10.5. In Section 10.6, we conclude by
summarizing the current state of this active area of research.

10.2 BACKGROUND

In this section, concepts that are common to multiple topics and those that form the
foundation for the methods and algorithms presented here are discussed. We begin by
developing the PES construct from the Born—Oppenhcimer (BO) approximation. Next,
we discuss the computation of analytic PES derivatives in the context of quantum
chemical calculations. In the last part of this section, we consider the common coordinate
systems used in optimization and reaction path following.

10.2.1 Potential energy surfaces

The PES arises naturally upon application of the BO approximation to the solution of the
Schrodinger equation. We begin by considering the general Hamiltonian

H=T +Tg+V(r,R) (1)

where T is the operator for the kinetic energy of electronic motion, 7 is the operator for
the kinetic energy of nuclear motion, and V(r,R) is the potential energy due to
electrostatic interactions between all of the charged particles (electrons and nuclei). The
BO approximation is applied by assuming that the three order of magnitude difference in
the mass of nuclei and electrons renders the nuclei fixed in space on the time scale of
electron motion. As a result, the nuclear kinetic energy term, Ty, in the molecular
Hamiltonian vanishes and the electronic and nuclear degrees of freedom can be separated.
This yields the time-independent Schrédinger equation for the electronic degrees
of freedom

[T, + V(r, O] V(r; R) = E(R)D(r; R) )]
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In Eq. (2) @(r; R) is the electronic wavefunction, which depends parametrically on the
nuclear positions, and the energy of the system, E(R), is a function of the nuclear degrees
of freedom. A plot of E vs. R gives the PES. For each non-degenerate electronic state,
a different PES exists.

Fig. 10.1 shows a model PES. The potential energy of the system is given by the
vertical axis and nuclear coordinates are given by the horizontal axes. A common analogy
compares the topology of PESs to mountainous landscapes [26]. Molecular structures
correspond to the positions of minima in the valleys. Reaction rates can be determined
from the height and profile of the pathway connecting reactant and product valleys.
Relative stabilities of isomers can be determined from the energies, or elevations, of the
minima on the PES corresponding to each structure. From the shape of a valley, the
vibrational spectrum of a molecule can be computed, and the response of the energy to
electric and magnetic fields determines molecular properties such as dipole moment,
polarizability, NMR shielding, etc. [8,27-29].

For simple systems, the PES can be fitted to experimental data. Molecular mechanics
(MM) methods can also generate approximate PESs very quickly. However, the types of
reactions that can be investigated using conventional MM methods are very limited.
Thus, for more complex and reactive systems these options are not viable, and one must
rely on PESs generated using quantum chemical calculations (i.e. semi-empirical,
ab initio, density functional theory (DFT), etc.).

In this chapter, we will explore a number of methods designed to navigate through the
mountain ranges of a PES to find local valleys (minimization), the highest point along a
reaction path through a mountain pass connecting reactant and product valleys (TS
optimization), and the path of least resistance down from the mountain pass to the valleys
below (reaction path following). In general, we are concerned with reactive systems,
i.e. chemistries involving bond making and breaking that cannot be treated using
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Fig. 10.1. Model potential energy surface showing minima, transition states, a second-order saddle point,
reaction paths, and a valley ridge inflection point (from Ref. [72] with permission).
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conventional MM methods. Therefore, the focus here is on PESs determined using
quantum chemical calculations. Additionally, minimization algorithms designed
specifically for use with hybrid quantum mechanical/molecular mechanics (QM/MM)
methods are included.

10.2.2 Analytic PES derivatives

One point that is not always obvious after one’s first encounter with the BO
approximation is that the PES is not known a priori. As discussed above, one may fit
a functional form to experimental and/or high-level quantum chemical calculation data,
but in most applications of electronic structure methods this is not practical. All of the
methodologies discussed in this chapter were designed with this in mind. When an
algorithm is used to navigate a PES, the value of the energy at each new point is unknown
and must be calculated.

Going back to the mountain range analogy [26], we can think of the starting structure
supplied by the user for a minimization, TS optimization, or reaction path following
calculation as a hiker who is dropped somewhere in the middle of the mountain range.
The hiker’s latitude and longitude correspond to the molecule’s geometry and the
elevation corresponds to the value of the PES. Depending on the type of calculation, we
may want the hiker to head to the bottom of a valley (minimization), to the top of a
mountain pass (TS optimization), or to follow the steepest pathway downhill from the top
of a mountain pass to a valley floor (reaction path following). Since the global PES is not
known, our hiker is essentially blind. Quantum chemical calculations provide the
navigation tools. Energy calculations can be thought of as an altimeter, giving the current
elevation. For the hiker to know the slope of the landscape, we also need to calculate the
first derivatives of the energy with respect to the nuclear coordinates, or gradients. Note
that the negative of the gradient on the PES is equal to the force. As a result, the terms
‘gradient’ and ‘force’ are often used interchangeably. If we compute the second
derivatives of the energy with respect to the nuclear coordinates, or Hessian, the hiker
now knows about the local curvature of the mountain range. The Hessian gives the force
constants of the harmonic vibrations of the molecule, and is therefore often referred to as
the ‘force constant matrix.’

Although the hiker would certainly like as much help as possible, we must consider the
relative cost of energy and derivative calculations and the usefulness of each
computation. There is a definite trade-off involved between information and expense.
To illustrate this point, let us consider minimization. The user’s initial guess at the
geometry of the structure places our hiker somewhere in the PES mountain range.
Calculating the energy alone at this initial position does not provide the hiker with
enough information to begin stepping toward the valley floor. Calculating the gradient,
though, tells the hiker which direction is downhill. Now, the hiker can take a step towards
the bottom of the valley. However, the optimal size of the step is not known. As a result,
if too large a step is taken the hiker may overshoot the minimum and go to the other side
of the valley. Or worse, the hiker may step through a mountain to a point in a different
valley altogether! If the hiker is also given the force constants, the local quadratic
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character of the mountain range is known. Combined with the gradient, the hiker can take
larger steps with greater confidence using the Hessian. Of course, in some applications
the cost of the Hessian may be more than what we are willing to pay for the hiker’s ability
to take larger steps.

To discuss the form and cost of analytic gradient and Hessian evaluations, we consider
the simple case of Hartree—Fock (HF) calculations. In nearly all chemical applications of
HF theory, the molecular orbitals (MOs) are represented by a linear combination of
atomic orbitals (LCAQ). In the context of most electronic structure methods, the LCAO
approximation employs a more convenient set of basis functions such as contracted
Gaussians, rather than using actual atomic orbitals. Taken together, the collection of basis
functions used to represent the atomic orbitals comprises a basis set.

Within the LCAO approximation, the HF energy for a spin restricted, closed shell
system is given by

E = (PIHID)
1
=23 (i) + Z[z(qb,-qb,» o) = (#0]|6:01) |+ vin
1
= Z(ulHlle,er D (uYR0NP,, Py = S PugPr) + Vi 3)
py p,VAa'

where @ is the electronic wavefunction, H is the Hamiltonian, ¢; = 3c,;x,, are the MOs
expanded as a linear combination of basis functions x, H is the one-electron Hamiltonian
(kinetic energy and nuclear-electron attraction), (uvlAo) are the electron—electron
repulsion integrals, u, v, A and o denote the basis functions, and P is the density matrix
given by

occupied

Po,=2 > cuc, )
i=1

where the summation is over occupied MOs and the factor of two comes from the fact
that each occupied MO holds two electrons. Formally, calculation of the HF energy is
O(Ny,s) computational work, where Ny, is the number of basis functions. Density
functional methods are comparable in cost to HF and a number of developments have
been made recently to achieve linear and near-linear scaling for large systems [30-38].

The first derivative of the energy with respect to a nuclear coordinate, g;, (i.e. the

gradient) is given by
oF <
o |<p>+2< |H|<;D> 5)
3q; 9g; 9g;

The first term in Eq. (5) is the Hellman—Feynman term and the second term is the
wavefunction derivative, or Pulay, term. The Hellman—Feynman portion of the gradient
involves a basic computation of the expectation value of a one electron operator. The
wavefunction derivative term, which arises because atom-centered basis functions are
used, depends on the derivatives of the one- and two-electron integrals in Eq. (3).
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Expanding Eq. (5) into a more convenient form for quantum chemical calculations gives

dE d(ulH,1v) d(uviro) ds,,
—=2» ——P ——— 2P, Py — P \P,)—2) —/—W ()
dqi ; d ; yixg + ”%0 dq, ( uvl Ao HA V(T) % dq, uy ( )

where §,,,, are the overlap matrix elements and
W=PFP (7

where F is the Fock matrix. In terms of the basis functions, the elements of the Fock
matrix are given by

Fu=2> (wH )P, + Y (urlA6)2P,,Pr,— P,sP),) (8)
v HVAC

This form for the gradient was introduced by Pulay in 1969 [39], and it serves as the
basis for the subsequent development of analytic energy derivatives for many different
theoretical levels, including correlated methods [28]. The computational cost of the HF
gradient calculation is formally O(N{,). Linear scaling methods have also been
developed [32,33,37]. The cost of an analytic gradient evaluation is roughly the same as
for the energy calculation. Thus, analytic gradient calculations are relatively routine for
ab initio PESs and do not generally represent a cost barrier for calculations.

Hessian calculations, on the other hand, are much more expensive and their use in PES
exploration methods adds appreciable cost to the calculations. Therefore, as we will show
in the later sections of this chapter, estimated and updated Hessians are often used where
second derivatives are required by the equations directing movement on the PES. For
some systems, the assumptions used to estimate the Hessian are not valid. In these cases,
or for cases where very accurate force constants are necessary for vibrational energy
calculations, computed (either numeric or analytic) Hessians may be necessary.

Prior to 1979, analytic calculation of second derivatives for ab initio methods was
thought to be unreasonably expensive [40]. However, in that year Pople et al. [41]
developed an efficient approach to solve the coupled perturbed HF (CPHF) equations
making analytic Hessian calculation very practical. Indeed, analytic computation of the
Hessian is generally cheaper than numeric evaluation of second derivatives and the
calculation of ab initio force constants by analytic methods is typical for systems with a
few hundred basis functions on commercially available computers. Analytic Hessians are
routinely available in electronic structure programs for semi-empirical, HF, DFT,
second-order Mpgller-Plesset (MP2), complete active space self-consistent field
(CASSCF), configuration interaction singles (CIS), and for other levels of theory.
Solution of the CPHF equations for force constants can be expanded to solve for third and
higher order derivatives as well [42—47]. However, derivative calculations become
increasingly expensive as the order is increased. Therefore, most PES exploration
methods developed for use with moderate to large systems limit analytic derivative
calculations to second order, and for large systems will often attempt to limit the number
of analytic Hessian evaluations.
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10.2.3 Coordinate systems

When defining the PES one can use a number of different coordinate systems to describe
the geometry of the system being studied; the simplest of these being Cartesian
coordinates. In Cartesian coordinate space, the position of each atom in the molecule (or
cluster, etc.) is given by three spatial coordinates, x, y, and z. For a system having Nyoms
atoms there will be a set of 3N, Cartesian coordinates, {x;}. A similar coordinate
system, which naturally develops in the context of nuclear motion (i.e. molecular
vibrations, reaction path following, molecular dynamics, etc.), is mass-weighted
Cartesian coordinates, {X;}, given by

X = xi/my &)

where {my]} give the atomic masses. Note that the subscript i goes over all of the
coordinates while the subscript N goes over the corrcsponding atomic centers.

An undesirable property of Cartesian coordinates (with or without mass-weighting) is
that they generate PESs with strongly coupled coordinates. An alternative to the
Cartesian coordinate systems is internal coordinates, sometimes referred to as Z-matrix
coordinates. This set of coordinates defines the molecular structure in terms of bond
lengths, angles, and dihedral angles. For a non-linear molecule, a unique structure is
defined by 3N,ms — 6 internal coordinates; for a linear molecule 3Nyms — 5 internal
coordinates are required. Because internal coordinates are based upon the connectivity of
the molecule, they are very natural for chemical systems. Furthermore, nuclear motion on
a PES defined in internal coordinates results in much weaker coupling between
coordinates than when the PES is given in Cartesian coordinates.

It has been shown that adding some redundancy in the internal coordinates generates a
more effective coordinate system, especially for cyclic molecules [48—52]. The
molecule’s geometry is described using all the chemically relevant bond lengths, angles,
and dihedrals, often more than the minimal 3N, —5 or 3Nuems — 6 internal
coordinates needed to specify the structure. As a simple example, consider benzene.
There are 12 atoms in benzene, which gives rise to 36 Cartesian coordinates and 30
internal coordinates. The number of redundant internal coordinates is 54—12 bonds, 18
angles, and 24 dihedrals. It should be noted that the number of redundant internal
coordinates can be altered by using different degrees of redundancy, and a multitude of
definitions have been proposed [49,50,52~-55]. They all perform as well as or better than
Cartesian and non-redundant internal coordinates.

Since the quantum chemical calculation of energy and derivatives is easiest in the
Cartesian space, it is necessary to convert these values to, and from, internals. Although
the transformation from Cartesian coordinates to internals (minimal or redundant) is
straightforward for the positions, the transformation of Cartesian gradients and Hessians
requires a generalized inverse of the transformation matrix [49] viz.

aB
ox

oq

Aq = BAx, 8= B_lgxa Hq = B_t(Hx - gq)B_lv B= H (10)
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In Eq. (10) q are the internal coordinates, x are the Cartesian coordinates, g is the
gradient, H is the Hessian, and the Wilson B matrix is given by B. Throughout this
chapter, a superscript ‘t” denotes transpose. Finite displacements in redundant internal
coordinates require that the back transformation of the positions to Cartesian coordinates
be solved iteratively using Eq. (10) and

X, = X + uB'G 'Aq (1
where
G = BuB' (12)

and u is an arbitrary matrix.

The calculation of the generalized inverses in Eqs. (10) and (11) scales as O(N2oms)-
Although the cost for this calculation can become significant for large molecules, it is
often the case that this cost is far outweighed by the cost of energy and derivative
calculations. Nevertheless, for large systems and studies where a low level of theory is
used (resulting in relatively fast energy and derivative calculations) the computation of
the generalized inverse can become a bottleneck. To make the redundant internal —
Cartesian coordinate transformations more tractable, techniques such as iterative
solutions to linear equations, Cholesky decomposition, and sparse matrix methods
have been developed and reported in the recent literature [56—63]. Using these methods,
the redundant internal < Cartesian coordinate transformations can be achieved with
linear scaling. The costs of coordinate transformations are more than compensated for by
the increased efficiency of the optimization algorithms that use them by decreasing the
number of steps required by the algorithm, which in turn decreases the number of energy
and derivative evaluations required to complete the job.

10.3 MINIMIZATION

At the start of nearly all chemical studies using electronic structure methods, geometry
optimization is required. In this section, we explore some of the most utilized algorithms
for minimization. As stated earlier, our focus here is on methods developed for use with
quantum chemical calculations where simple functions of the energy and derivatives of
the PES are not available but rather are calculated by electronic structure methods as
needed. It should also be kept in mind that compared to the cost of the energy calculation
a geomelry optimization step in most cases is inexpensive. Topics related to global
optimization [13—17] and methods catered toward specific advantages or disadvantages
of fitted and empirical PESs [11,64-67] are beyond the scope of this chapter.

The problem of geometry optimization involves an unconstrained minimization on the
PES. The numerical analysis literature abounds with methods for minimizing non-linear
functions of many variables [68—71]. These methods can be placed in three general
categories: methods using only the energy, gradient based methods, and methods
employing second derivatives. Although energy-only algorithms are applicable across
the widest range of levels of theory and problems, they tend to be the least efficient and
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require a large number of steps to converge. On the other hand, methods that use the
Hessian are likely to converge in the least number of steps. However, as discussed in
Section 10.2, Hessian evaluation can be quite costly and convergence in a small number
of steps may not necessarily equate to the least expensive overall calculation. Gradient-
based optimizers often give the best balance between the energy/derivative costs and rate
of convergence. As a result, the most commonly used geometry minimization algorithms
are gradient based.

Regardless of which method is used, all geometry minimizations are comprised of
three basic elements. First, energy and derivatives are computed at the initial geometry.
Second, the geometry is changed to take a step toward the minimum. Third, a test
(or series of tests) is carried out to determine if the new position is close enough to the
PES minimum. If it is, the minimization is complete. If not, the process is repeated to take
another step toward the minimum.

Included in the methods discussed below are Newton-based methods (Section 10.3.1),
the geometry optimization by direct inversion of the iterative subspace, or GDIIS,
method (Section 10.3.2), QM/MM optimization techniques (Section 10.3.3), and
algorithms designed to find surface intersections and points of closest approach (Section
10.3.4). We conclude the discussion of minimization methods in Section 10.3.5 with a
discussion of practical considerations related to minimization, including suggestions for
overcoming common problems.

10.3.1 Newton methods

It has been well established that Newton-based methods are the most efficient type for
minimization problems [9,11,12,25,72]. The starting point for these algorithms is to
approximate the PES by a Taylor series expansion about the current point, X,. Truncating
the expansion at second order gives

E(x) = Ey + ghAx + %AxtHoAx (13)
The gradient, g(x), for this Taylor series is
g(x) = go + HpAx (14)
In Eq. (13), Ey, g5, and H, give the energy, gradient, and Hessian at the point x, and
Ax =x; — xg (15)
At the minimum, the gradient will be zero,
g(x) = g + HoAx = 0 (16)
Solving for Ax gives the step that leads to the minimum in the local quadratic region,

Ax=-H g (17)
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where the subscript ‘0” from (16) has been dropped for convenience. Eq. (17) is the
Newton step, which is the basis of most minimization methods. Formally speaking, when
analytic gradients and Hessians are both used to take steps according to Eq. (17) the
algorithm is known as Newton—Raphson (NR). A general flowchart for Newton methods
of optimization is shown in Fig. 10.2.

Since analytic Hessians can be rather expensive, especially for larger systems, it is
advantageous to avoid computing second derivatives. Nevertheless, the NR algorithm is
much more efficient than methods using only gradient or only energy information. The
quasi-Newton (QN) approach satisfies both of these concerns. The QN step direction is
still determined using Eq. (17), but instead of using an analytic Hessian at each step we
begin with an approximate Hessian at the start of the calculation (i.e. an empirically
estimated Hessian or a Hessian computed at a lower level of theory) and use Hessian
updating at the subsequent steps in the optimization. Hessian updating approximates the
Hessian using the change in position and gradient from the previous step. Commonly
used updating schemes include Murtagh—Sargent (MS) or symmetric rank 1 (SR1),
Powell symmetric Broyden (PSB), Davidson—Fletcher—Powell (DFP), and Broyden—
Fletcher—Goldfarb—Shanno (BFGS) [68—71,73—78]. The BFGS update is generally

Choose coordinate system;
Input starting geometry;
Obtain initial estimate of Hessian.

v

Calculate energy and gradient.

Minimize along long between current
point and previous point.

v

Update the Hessian.

v

Use Hessian and gradient to take a step.
Employ RFO or TRM.

Check for convergence. w
¢ no

yes
Check for maximum cycles.
yno

Update geometry.

Fig. 10.2. Flowchart for quasi-Newton geometry optimization algorithms (from Ref. [72] with permission).
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accepted as the best formula for minimizations and is given by

AgAg! _ HOMdAxAx HOM

Hnew — Hold
+ Ax'Ag Ax'HOMAx

(18)

Eq. (18) is symmetric and positive definite (i.e. the eigenvalues of the Hessian are all
positive), and minimizes the norm of the change in the Hessian. Corresponding updating
formulae also exist for the inverse of the Hessian [68—71,77], which allow the algorithm
to avoid the inversion of H needed in Eq. (17).

A modification to Bofill’s update method (which was originally designed for use in TS
optimizations) [79] is also very useful for minimization. This update combines the BFGS
and MS schemes, and is given by

H™Y = d)AHBFGS + (1 _ d))AHMS (19)
where the MS update is

(Ag — HYAx)(Ag — HYAx)!

AHM = 20
Ax'(Ag — H°YAx) (20
and the coefficient is computed according to
|Ax'(Ag — HYYAx)|
b= ok ) @1

|AxIlAg — HoMAx|

Minimization of most small and moderately sized systems is handled very well by QN
optimization. For more difficult cases, it is sometimes useful to calculate analytic
Hessians at the beginning, every few steps, or even at every step, rather than using
updated second derivatives. It may also be useful to compute key elements of the Hessian
numerically, particularly those corresponding to coordinates changing rapidly in the
optimization [80]. These approaches are discussed in more detail in Section 10.3.5.

For cases where the current structure is far from the minimum (where the magnitude of
the gradient is large) or the PES is very flat (where the Hessian has one or more small
eigenvalues), a Newton step may be very large and lead to a point where the model
quadratic surface is no longer valid. Circumventing this problem is accomplished by
limiting the size of each Newton step [68—71]. There are two closely related methods
often used for this purpose: the trust radius method (TRM) and rational function
optimization (RFO) [79,81-85].

TRM specifies a maximum step size, know as the trust radius, 7, and limits the size of
each step in the optimization to this magnitude. Minimizing the energy in Eq. (13) subject
to this constraint, |Ax| < 7, gives

Ax=—MH-ADg (22)

where I denotes the identity matrix. A is less than the lowest eigenvalue of the Hessian,
less than zero, and is adjusted in order to satisfy the constraint. This ensures that the step
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moves downhill on the PES. The TRM step and 7 can also be written as

M= -3 8 23)
=1 7
_ (vig)’
g*;G?K? (24)

where b; and v; are the Hessian eigenvalues and the corresponding eigenvectors. The
value of the trust radius can be changed through the course of the optimization depending
on how well the estimated energy difference (using Eq. (13)) after each step compares to
the actual energy difference. When this difference is small, the trust radius is increased;
when it is large, the trust radius is decreased.

RFO can also be used to control the size of the trust radius by minimizing the energy on
a rational polynomial approximation to the PES

1
ghAX + 5 Ax'HyAx
1 + aAx'Ax

E=E,+ (25)

The parameter « is adjusted to ensure that the step direction leads to a lower energy and
that the trust radius is satisfied. This yields equations similar in form to Egs. (22), (23),
and (24). A principle advantage of TRM and RFO is that they step downhill even when
the Hessian has one or more negative eigenvalues. Under the same conditions, a raw
Newton step will move toward a saddle point. Nevertheless, the character of the structure
resulting from a minimization using any algorithm should always be confirmed by
calculating the second derivatives and checking that the Hessian has all positive
eigenvalues (i.e. all real frequencies).

To ensure that the step lowers the energy and the magnitude of the gradient by a
sufficient amount (e.g. the Wolfe condition), it is also important to include an
approximate line search [70]. Often, satisfactory results can be achieved by fitting a cubic
or constrained quartic polynomial to the energy and gradient at the beginning and end of
the step [86]. If the minimum of the line search is within this interval, the energy and
gradient can be obtained by interpolation and used in the next Newton step.

For large systems with several hundred atoms, the standard QN algorithms for
determining the next geometry step can become a bottleneck. The QN step can also be a
bottleneck when the energy evaluation is inexpensive, as is the case when low levels of
theory such as molecular mechanics or semi-empirical MO methods are used. Storing the
Hessian requires O(N?) memory and solving the equations involves O(N>) work. One
alternative is to use conjugate gradient methods for minimization [70]. The storage and
cpu requirements for these methods scale linearly with the system size, but their rate of
convergence is significantly poorer than QN methods. Better convergence can be
achieved with limited memory QN methods such as L-BFGS [87,88]. In this approach,
the Hessian or its inverse is not stored or computed explicitly, but are constructed
implicitly as needed. An initial diagonal Hessian, Ax, and g from a fixed number of
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the most recent steps are stored. Thus, storage scales linearly with system size. The
update of the inverse Hessian is formed implicitly and multiplied by the gradient to get
the next step

d — Ax,Ag)) H! (I - AgiAx;) | AxAx,
AxiAg, ¢ AxlAg, AxtAg,

Ax=-H'g, H = (26)
The computational work involves mostly dot products. If the maximum number of
updates is fixed, the work scales linearly. The L-BFGS method has been used in a number
of optimization problems in computational chemistry [62,64,89,90].

10.3.2 GDIIS

An alternative optimization method to NR and QN is geometry optimization by direct
inversion of the iterative subspace, or GDIIS [91-94]. GDIIS is based on a linear
interpolation/extrapolation approach and is very well suited for flat PESs (i.e. one or more
eigenvalues of the Hessian are small), where NR can be less efficient. For other situations,
the efficiency of GDIIS is roughly the same as NR when the initial structure is near the
minimum. However, as discussed below, GDIIS can experience difficulties and a number
of modifications to the initial GDIIS approach have been developed to overcome these
impediments.

Using a linear combination of the structures from the previous » steps, qy, ..., q,, the
guess for the next GDIIS structure is

qQ =>cq @7
i=1

where the coefficients ¢; are defined by minimizing the estimated error in q*. This
estimated error, or residuum vector, r, is given by

r=Sce (28)
=1

where e; is an error vector associated with q;. In practice the minimization of Eq. (28) is
done with respect to Irl?, since r is a vector. This leads to a least-squares problem to solve
for the coefficients, ¢;. To estimate the error, two common definitions are used. The first is

a NR step,
e =—H'g (29)
and the sccond is the gradicnt,
e =g (30)

Clearly, if the point q; is very good (e.g. very near the true PES minimum) then its
gradient will be small as will the NR step from this point. Conversely, if q; is far from the
true PES minimum then e; will be large regardless of whether Eq. (29) or (30) is
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used. Since an estimate of the error in q" is available, the actual GDIIS step makes use
of r in defining the next structure, q; -

Qiti = Zci(qi -H'g) (3D
i=1

The NR definition for e, given in Eq. (29), has been used in Eq. (31). If optimization
convergence is not met at the point q;, , then it is added to the collection of structures and
a new GDIIS step is taken.

As mentioned above, the efficiency of GDIIS is similar to, and at times greater than,
NR. However, GDIIS comes with its share of problems. First, GDIIS tends to converge to
the nearest stationary point on the PES, which may or may not be a minimum. For this
reason, it is crucial to test the curvature (by computing the Hessian or harmonic
frequencies) of an optimized structure that has been found using GDIIS. A second
shortcoming of GDIIS is that it can fall into continuous oscillations if it steps near an
inflection point (points where one or more Hessian eigenvalues are zero and the
magnitude of the gradient is a minimum, but not zero) and the magnitude of the gradient
is larger than the convergence criteria of the optimizer. An additional problem develops
when many steps are taken. If a large number of points are used in the linear combinations
shown in Egs. (27) and (28) linear dependencies can appear and result in numerical
instabilities in the least-squares solution for the expansion coefficients, c;.

To overcome these deficiencies, Farkas and Schlegel [95] have developed a controlled
GDIIS algorithm. Controlling numerical instabilities arising from linear dependencies in
Egs. (27) and (28) can be achieved by limiting the number of points used. Before taking
the next GDIIS step, the linear combinations are built one term at a time beginning at the
latest point and working back toward the first point. Before adding the next term, near
linear dependency is tested for. If the addition of a point indicates a potential numerical
instability, only the points used in the GDIIS expansion before the instability are
employed.

Farkas and Schlegel [95] also suggested modifications to increase GDIIS’s likelihood
to converge on a minimum (or TS if desired; see below for further discussion), rather than
a higher order saddle point, and to avoid oscillation problems near inflection points. The
first modification employs a reference step, such as NR or any other standard
minimization method. By comparing each GDIIS step to this reference, steps that head
away from the stationary point of interest can be easily detected, and incorporation of
RFO or TRM into the NR step (for computing €) can be used to control the GDIIS step
direction. Further stability in this regard can be attained by combining the GDIIS and NR
(or other standard optimization method) steps. In this way, the actual step taken during
the GDIIS optimization results from a weighted mixing of the standard optimization and
GDIIS steps. A final modification involves Hessian updating. In general, the convergence
of GDIIS is not dependent on the quality of the Hessian. For this reason, early
implementations of GDIIS used a fixed Hessian for every step. However, it has been
shown that updating the Hessian yields increased stability and efficiency for GDIIS. By
implementing the modifications listed above, GDIIS minimization is an attractive
optimization algorithm, especially for large systems and for flat PESs.
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The GDIIS method and its modifications scale as O(N?) with system size because of
the need to invert the Hessian and to compute the reference step. If a diagonal Hessian is
used and a fixed maximum number of structures are retained in the GDIIS equations, the
method becomes linear in work and storage [95,96]. However, the convergence is
somewhat slower than the full matrix GDIIS approach. A linear scaling GDIIS method
with improved performance can be obtained by combining GDIIS with the L-BFGS
approach [87,88] for updating and utilizing the inverse Hessian (see Eq. (26)).

10.3.3 QM/MM optimizations

In recent years much progress has been made to adapt electronic structure calculations to
large systems, such as biochemical compounds. One of the more popular advances in this
area is the QM/MM approach (QM—quantum mechanics; MM—molecular mechanics)
[97-107]. Although there exists a wide variety of QM/MM methods, the basic principle
behind them is the same. Namely, a large molecule or system is broken-up into two
sections: one that will be treated at a high level of theory—the QM piece—and one that
will be treated at a low level of theory—the MM piece. Typically the QM region of the
system is defined as the sector where ‘the chemistry’ is occurring, and the rest of the
system 1is then defined as the MM region. For instance, a QM/MM calculation on an
enzyme generally places the active site in the QM region and the rest of the enzyme in the
MM region. The ONIOM scheme is a particular type of QM/MM approach that has
gained considerable attention because it is a generalized method that can break a system
into many layers, which may consist of multiple QM levels, not just one QM region and
one MM region [99,108-110].

Because the QM/MM energy, gradient, and Hessian are well defined, one can navigate
the combined QM/MM PES. Optimization of the entire system on the QM/MM PES can
require many optimization steps and be very costly. Most popular implementations of
QM/MM optimization decrease the cost of minimization by employing microiteration
schemes [111—114]. The idea here is to alternate between minimization of the QM and
MM regions of the system. Since calculations in the MM region are cheap (in terms of
computational cost), the typical use of microiterations fully optimizes the MM region
after each QM step. Because the QM and MM regions are treated individually and are
uncoupled during the optimizations, progress toward the QM/MM PES minimum can be
problematic. As a result, traditional microiteration approaches can converge quite slowly
or fail, especially when geometric constraints are imposed on the MM region.

One source of this problem is the choice and handling of the coordinate systems of
each region during their independent optimizations. Since the MM energy and
derivatives are very cheap, it may not be cost effective (in terms of computational
time) to use internal coordinates due to the conversion to and from Cartesians (see Eqs.
(10), (11), and (12)). However, within the QM region it is still useful to carry out the
optimization in internal coordinates. To overcome the difficulties associated with QM/
MM optimization using microiterations, Vreven et al. [112] chose a set of coordinates
consisting of Cartesian coordinates for the MM region and a set of internal coordinates
for the QM region. Furthermore, the Cartesian coordinates in the MM region are
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augmented to allow the QM region to undergo overall translation and rotation, which is
imperative for cases where constraints in the MM region are present. They also found that
this feature slightly improves efficiency when there are no constraints in the MM region.
Lastly, their method takes special care to ensure the QM region remains in the same local
minimum on the QM PES throughout the MM optimizations.

10.3.4 Finding surface intersections and points of closest approach

The search for conical intersections, avoided crossings and seams of intersection between
two PESs are also tasks involving optimization [115—123). If the two surfaces represent
different spin states or have different spatial symmetry, they can cross. If they are the
same symmetry and spin, they can interact and the crossing is avoided. Where the matrix
element coupling the two surfaces is zero, they touch and give rise to a conical
intersection, as illustrated in Fig. 10.3. To study the mechanisms of photochemical
reactions, we often wish to find the lowest energy point on a seam or conical intersection.
For a seam of intersection between two adiabatic surfaces £, and E,, werequire E;, = E,.
Since a (non-linear) molecule has 3N,,,,s — 6 internal degrees of freedom, a seam of
intersection has 3Ny,ms — 7 degreces of freedom because of the additional constraint. For
a conical intersection, we also require the coupling matrix element, H,,, to be zero.
Hence conical intersections have 3N, — 8 degrees of freedom. For molecules larger
than triatomic, finding the lowest point on a seam or conical intersection can be quite
challenging because of the number of degrees of freedom in the constrained
minimization.

One approach to finding the lowest point on a seam or conical intersection is to use
Lagrangian multipliers [118—122]. The Lagrangian,

L = E2 + )\1(E2 - El) + /\2H12 (32)

is minimized with respect to A;, A, and the geometric coordinates of the molecule so that
the constraints £} = E, and H;, = 0 are satisfied.

Alternatively, the constraints can be treated using projection methods [123]. Instead of
minimizing the absolute value of the energy difference, |E, — E, |, it is advantageous to
use the square of the energy difference, (E, — E,)?, since this quantity is better suited for
quasi-Newton optimization methods. For the remaining 3N,y — 7 or 3Natoms — 8
degrees of freedom, the energy of the upper adiabatic surface is minimized. The gradient
is given by

B ¢ ¢
g — d(E; — Ey) 4 (I Viv] )(I— Vz"z)@ (33)

dx lv, 1> Iv,I* ) dx
where

v o= d(E, — Ey)

1 ix (34)
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Fig. 10.3. Interactions between two model potential energy surfaces showing (a) a seam, (b) a conical
intersection, and (c) a weakly avoided conical intersection (from Ref. [72] with permission).
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and

_ dHy,
dx

vy (35)
The gradient given by Eq. (33) can be used directly in a conventional unconstrained
quasi-Newton optimization algorithm to find the lowest points on seams, avoided
crossings, and conical intersections.

10.3.5 Practical considerations

The principle factors affecting the success and efficiency of a minimization calculation
are the starting structure provided by the user, the coordinate system, the algorithm to
choose the direction and size of the step, the initial Hessian, and the quality of the updated
Hessian at later steps. In this section, we discuss these, and other, practical aspects of
minimization and offer suggestions for overcoming typical pitfalls. Illustrative
calculations have been carried out with the Gaussian series of programs [124] to
demonstrate some of these aspects, but the general considerations should also be relevant
to other electronic structure codes. Although previous sections have included
minimization techniques used with QM/MM calculations and algorithms for locating
conical intersections and points of closest approach, the discussion here is focused
primarily on standard minimization of structures using electronic structure methods.

10.3.5.1 Starting structure

Obviously the quality of the initial structure provided by the user will affect the success
and efficiency of an optimization calculation. The closer the starting structure is to the
PES minimum, the faster (in terms of the number of steps taken) the minimization will
complete. On the other hand, a poor starting structure can lead to a lengthy calculation
and even failure to converge. Preparing a starting structure for minimization is most
readily accomplished with the aid of molecular modeling and visualization software. It is
also common practice to use experimentally obtained structures (i.e. from crystal
structures) when available. Additionally, starting structures can be generated by
minimization at lower levels of theory.

While it is clear that a number of viable methods exist for building an initial structure
for minimization, it is important to note that optimization calculations cannot yet be
treated as black box operations. Instead, a basic understanding of the chemistry of the
problem being studied is necessary to ensure that the user is able to properly diagnose
problems and determine the appropriateness of an initial structure. For example, consider
cyclohexane. From undergraduate organic chemistry classes we know that there are two
conformations—chair and boat. Both conformations will have local minima on the PES
and using a boat-like structure for the start of a minimization will result in a converged
optimization at the boat conformation. If the goal of the optimization is to study the more
stable chair conformation this result is not what we want. To get the chair structure, one
must start with a chair-like structure. To further illustrate this point, Fig. 10.4 shows a
one-dimensional slice of the PES of 1-chloro 2-fluoroethane along the Cl-C-C-F
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Fig. 10.4. A one-dimensional slice of the potential energy surface of 1-chloro 2-fluorethane along the C1-C—
C-F dihedral coordinate.

torsion angle. In this case there are three local minima on the PES, although the minima at
70 and 290° are mirror images. Again, the initial structure will determine which local
minimum the optimizer converges to. Starting an optimization with a CI-C-C-F
dihedral of 30° will lead to the minimum at 70°, while starting at 160° will converge at the
global minimum at 180°. One must employ chemical insight when generating the initial
structure for minimization. For very complex systems, it may be necessary to generate
multiple structures representing different potential conformations, which allows for the
study of relative conformational energies, etc.

10.3.5.2 Coordinate system

Another aspect of geometry optimization affecting the success and efficiency of the
calculation is the choice of coordinate system. Section 10.2.3 included defimtions for
different coordinate systems commonly used to describe PESs. Early work in geometry
optimization was nearly always done in non-redundant internal coordinates. This
coordinate system is easy to use when building acyclic structures and inherently removes
rotational and translational degrees of freedom from the system, making it advantageous
from an algorithmic standpoint. However, geometry optimization using non-redundant
internal coordinates does require some thought since the efficiency, and sometimes the
success or failure, of the optimization can depend on the choice of Z-matrix components.
An overview of techniques for building effective Z-matrix inputs appeared in an carlier
review, and interested readers are referred to that work for a more in depth discussion
[80]. Non-redundant internals perform especially poorly in the optimization of polycyclic
systems [48—53,63,125]. In these cases, it is better to use Cartesian coordinates than to
employ a Z-matrix representation. It has also been shown that mixing non-redundant and
Cartesian coordinates can also be useful at times [125].

The most efficient coordinate system, in general, for geometry optimization using
electronic structure methods is redundant internal coordinates, especially for cyclic
compounds [48—-53,63,125]. Table 10.1 shows the number of steps necessary to minimize
a set of nine structures using these four different systems. All of the optimizations were
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Table 10.1 Comparison of the number of steps required to minimize geometries using various coordinate
systems®

Molecule Cartesian Z-Matrix Mixed Redundant internals
2-Fluoro furan 7 7 7 6
Norbornane 5 7 5 5
Bicyclo{2.2.2]octane 19 11 14 7
Bicyclo[3.2.1]octane 6 6 7 5
Endo hydroxyl bicyclopentane 18 8 9 12
Exo hydroxyl bicyclopentane 20 10 11 11
ACTHCP >80 65 72 27
1.4.5-Trihydroxy anthroquinone 11 10 17 8
Histamine H* >100 42 47 19

“For complete details see Ref. [51].

started from the same initial geometries [51]. It is clear from this data that for rigid
compounds all four coordinate systems are essentially the same. As the flexibility of the
molecules increases, the advantage of using redundant internal coordinates becomes
increasingly apparent. Because of their obvious benefit, redundant internal coordinates
are favored for nearly all geometry optimization calculations used with electronic
structure methods.

There are two general problems that can arise in the course of an optimization
calculation due to the use of redundant internal coordinates. The first problem is caused
by a poorly chosen set of coordinates for the starting structure. Although most programs
use an automated mechanism to determine the initial definitions for the redundant
internal coordinates, these algorithms are not error proof. To the best of our knowledge,
all of the available codes use tables of covalent radii or standard bond lengths, or their
equivalent, to determine which atoms are bonded to cach othcr. The user can also define
additional internal coordinates. Once the connectivity of the molecule is established,
angles and dihedrals can be readily defined. If fragments are detected (i.e. two or more
parts of the system that are not connected by bonds), then one, or more, coordinates are
added so that the fragments can interact and intermolecular distances can be accounted
for. Nevertheless, the tables used to define the initial bonding can ignore important bonds,
which can lead to considerably slower convergence. For this reason, it is essential to
check the definitions of the redundant internals, which are usually printed out in an output
file at the start of the optimization calculation. Qur experience has shown that
modifications to the redundant internal coordinate definitions are often necessary for
transition and inner transition metal complexes.

Another problem that can occur during the course of a minimization in redundant
internal coordinates is the internal forces being reported as infinity or undefined [126]. As
discussed in Section 10.2.3, the energy derivatives are typically computed in Cartesian
coordinates and later converted to internals using Eq. (10). If the redundant internal
coordinate definitions become ill defined and/or include linear dependences, then the
conversion of forces and Hessians to internal coordinates can become problematic. The
easy fix to this problem begins by inspecting the latest structure in the optimization
using visualization software to ensure that the structure is reasonable. If all is well, start
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the minimization again giving the last structure from the previous optimization as the
initial structure for the current calculation. This allows for generation of new coordinate
definitions. Again, these definitions should be checked to make sure that all of the critical
definitions have been included. In extreme cases, it may be necessary to reduce the
redundancy of the coordinate system.

10.3.5.3 Minimization algorithm

The third factor affecting the efficiency of an optimization calculation is the choice of the
minimization algorithm. In the sections above we discussed the most common procedures
used in practice—QN with RFO or TRM modifications, GDIIS, and controlled GDIIS.
The relative efficiencies of these three approaches have appeared in the literature [95],
and the results of that work are summarized in Table 10.2. As discussed in Section 10.3.2,
regular GDIIS can fall into continuous oscillations near inflection points on the PES. This
pathology is experienced in the optimization of five of the eight entries in Table 10.2. The
controlled GDIIS method corrects these problems and converges to the appropriate
minima. For the first three entries in Table 10.2, regular GDIIS optimization converges to
saddle points instead of minima. Again, this problem is solved by using the controlled
GDIIS algorithm. Minimization of the smaller systems is equally efficient using
controlled GDIIS or QN (with step size and direction control). When larger and more
flexible systems are studied, the controlled GDIIS method is often more efficient than
QN. Controlled GDIIS is also the recommended method for optimizations on flat PESs
and those employing tight convergence criteria.

10.3.5.4 Hessian quality

The final factors affecting optimization are the choice for the initial Hessian and the
method used to form Hessians at later steps. As discussed in Section 10.3.1, QN methods
avoid the costly computation of analytic Hessians by using Hessian updating. In that
section, we also showed the mathematical form of some common updating schemes and
pointed out that the BFGS update is considered the most appropriate choice for
minimizations. What may not have been obvious from Section 10.3.1 is that the initial

Table 10.2 Comparison of the number of steps required to minimize geometries
using QN with RFO, regular GDIIS, and modified GDIIS®

Molecule QN with RFO Regular GDIIS Controlled GDIIS
Pterine 36 12° 36
Histamine H* 24 85° 25
Hydrazobenzene 25 41° 25
ACTHCP 31 _c 32
Taxol 64 - 67
FOr-(Ala) lo‘NHg 67 € 59
For-(Ala)»o-NH> 103 —¢ 93
Crambin 190 - 150

“For complete details see Ref. [95].
®Attempted minimization yielded a transition state (i.e. first-order saddle point).
“Attempted minimization resulted in oscillations about an inflection point.
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Hessian does not need to be very accurate. During the optimization the Hessian will be
updated, and while the structure moves closer to the PES minimum the Hessian slowly
approaches the correct second derivative matrix. In general, the closer the initial Hessian
is to the correct Hessian, the faster the optimization will come to convergence.

Most QN optimizations use a Hessian generated from a valence force field or other
empirical method. Alternatively, analytic second derivatives can be computed and used
for the initial Hessian. This will often decrease the number of steps required to converge
to the minimum. However, depending on the size of the system being studied the cost of
the initial analytic Hessian calculation may yield a longer overall calculation time than an
optimization starting with an estimated Hessian, even though this calculation might
require a few more steps. For cases where the starting structure is far from the minimum
or when the topology of the PES is not well approximated by a quadratic function (i.e. the
Taylor series given in Eq. (13)), Hessian updating may be poor and convergence may be
difficult. In these situations it may be necessary to calculate analytic Hessians at every
step. In principle this should lead to fewer steps in the optimization, but the additional
cost of analytic Hessians will severely increase the overall computational cost for
moderate and large systems.

The data presented in Tables 10.3 and 10.4 illustrate some of these issues. Using a set
of six compounds, ranging in size from 6 to 72 degrees of freedom, we have carried out
optimizations using the identity matrix, an estimated empirical Hessian, and an analytic
Hessian for the initial second derivative matrix. Additionally, we have included data for
optimizations using analytic Hessians at every step, rather than updating the second
derivatives. Table 10.3 shows the number of optimization steps required to complete an
optimization using these different approaches to define the initial Hessian, and Table 10.4
contains the relative timing of each calculation. Clearly, using the identity matrix to
estimate the initial Hessian is not efficient. For roughly the same cost per step, one can use
an estimated Hessian based on empirical force fields [86,127] and achieve a significant
improvement in the rate of convergence. However, in the case of pterine and caffeine the
identity matrix incorrectly leads the minimization to a saddle point. Since the QN-RFO/
TRM method for optimization shifts negative eigenvalues of the Hessian to positive

Table 10.3 Comparison of the number of steps required to minimize geometries (QN with RFO
algorithm) using a unit matrix, empirically derived Hessian, and analytic Hessian for the initial Hessian
followed by Hessian updating and using all analytic Hessians™"

Molecule Initial unit matrix Initial empirical Hessian Initial analytic All analytic
with updating with updating Hessian with updating ~ Hessians
Ammonia 14 8 6 4
Pterine 22¢ 56 15 10
Caffeine 26° 13¢ 67 13
ACTHCP >100 34 35 15
Histamine H* > 100 23 30 11
Hydrazobenzene 90 30 29 19

“Starting structures taken trom Ret. [51].
PAll calculations carried out at the HF/STO-3G level of theory.
“Attempted minimization yielded a transition state (i.e. first-order saddle point).
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Table 10.4 Relative timings to minimize calculations using a unit matrix, empirically derived Hessian,
and analytic Hessian for the initial Hessian followed by Hessian updating and using all analytic Hessians®

Molecule Initial unit matrix Initial empirical Hessian Initial analytic All analytic
with updating with updating Hessian with updating ~ Hessians
Ammonia 22 1.3 1.1 10
Pterine 5.3° 13.8 43 8.8
Caffcine 8.5" 4.1° 12.1 23.0
ACTHCP >34.5 8.0 8.5 10.7
Histamine H" >34.5 4.8 6.4 57
Hydrazobenzene 29.8 10.2 11.0 343

“Convergence data is given in Table 10.3.
» Attempted minimization yielded a transition state (i.e. first-order saddle point).

values, describing the curvature correctly for these structures allows the optimizer to
properly converge to PES minima when analytic Hessians are used for the initial Hessian.
Nevertheless, for most of the compounds studied, and for many structures in general,
using an analytic Hessian at the start of the optimization provides very little, if any,
improvement to an optimization carried out with an empirically derived Hessian.
Moreover, calculating analytic Hessians only at the start of the minimization or at every
step can severely increase the computational cost (see Table 10.4).

In general, it is advisable to use an empirical Hessian at the start of a minimization and
to update the Hessian using any of the standard methods (see Section 10.3.1). After an
optimization has completed, the nature of the stationary point must be confirmed by
a calculation of the Hessian. This is not a significant extra burden, since the Hessian at the
optimized geometry is also needed to calculate the zero point energy and thermal
corrections to the enthalpy. If the Hessian calculation reveals that the optimization has
converged to a saddle point (first order or higher), then using an analytic Hessian at the
start of the minimization and Hessian updating at subsequent may be best. If this second
optimization has also converged to a saddle point, then employing analytic Hessians at
every step, or every few steps, may be necessary. What is clear from Table 10.4 is that the
decrease in optimization steps using all analytic Hessians does not make up for the cost
increase that such a calculation yields. Therefore, using all analytic Hessians in an
optimization is best treated as a last resort approach.

10.3.5.5 Tips for difficult minimizations
In this, the last portion of Section 10.3.5, we provide suggestions for solving difficult
minimization problems that have not yet been addressed. Specifically, this subsection
focuses on problems generally resulting because of the topology of the PES and not because
of numerical difficulties arising from the application of a particular method or algorithm.
In the previous section we suggested that analytic Hessians can be used to help
converge to a minimum when minimizations using empirical and/or updated Hessians
yield first- or higher-order saddle points. Often times, a more cost effective means to
achieve the same goal is to slightly distort the offending coordinate and start another
minimization using an empirical Hessian at the start with updating thereafter.
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As an example, consider a minimization of 1-chloro 2-fluorethane starting with a Cl—
C~C-F torsion angle of 125° that has converged to the saddle point at 120° in Fig. 10.4,
even though our intent was to find the structure corresponding to the minimum at 180°.
We now have a couple of options. One option is to start the calculation over from our
initial starting geometry using an analytic Hessian for the initial second derivative
matrix. We could also choose to use analytic Hessians at every step or every few
steps in the optimization. Alternatively, we could use a molecular graphics package to
inspect the imaginary frequency corresponding to the negative Hessian eigenvalue
and distort the structure along that normal mode. In this particular case, visualization of
this frequency will show motion along the C1-C—C-F torsion angle distorting the
molecule from an eclipsed geometry to a staggered one. Distorting the molecule by
setting the C1-C—C-F angle to roughly 150° will be enough to use an empirical
Hessian with updating to converge to the intended minimum. This last option will be
much more cost effective since it avoids analytic calculation of the Hessian during the
optimization. Of course, a Hessian calculation will still be needed when the calculation
has completed to ensure that the newly optimized structure is a minimum on the PES
and to obtain the zero point energy.

Another method for removing imaginary frequencies is to utilize constrained
optimizations. As the name implies, user defined coordinates are frozen and the remaining
coordinates are allowed to minimize. If one or more coordinates have negative Hessian
eigenvalues associated with them, it can be useful to freeze all of the other coordinates
and allow the offending coordinates to relax. Once the constrained optimization
has completed, a frequency calculation is in order to ensure that the imaginary frequency
has been removed. If the imaginary frequency still exists, then the other suggestions
given above may be helpful and applied together with constrained optimization. After
the negative second derivative eigenvalues have been removed, a full optimization
(i.e. without any constraints) should follow with a subsequent frequency calculation at
the end.

In some very troublesome cases, where only one imaginary frequency remains, a
method that can be used as an approach of last resort is to carry out a reaction path
following calculation (details on reaction path following are given below in Section 10.5)
for a few steps. Starting from a first-order saddle point, a reaction path following
calculation will move downhill toward two minima, one of which should correspond to
the structure of interest. It is not usually necessary to carry the calculation all the way to
the endpoints. After the calculation has been completed the two final structures can be
visualized and the appropriate one chosen. If enough steps have been taken this structure
should now be near the quadratic region of the minimum and a QN minimization should
be able to converge on the intended minimum. However, it may be necessary to calculate
analytic second derivatives for the initial Hessian of this optimization.

10.4 TRANSITION STATE OPTIMIZATION

As discussed earlier, minima on the PES correspond to equilibrium geometries and
chemical reactions can be described in terms of motion on the PES from one minimum
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corresponding to the reactant to a different minimum corresponding to the product.
Along the way, the system may pass through other minima, which comespond to
intermediates. The motion from one minimum to another can be approximated by the
path of least resistance, or the minimum energy pathway (MEP). While moving along
the MEP, the system will reach a point of highest energy—the transition state (TS).
Turning back to the mountain range analogy from Section 10.2, the TS is at the top
of the lowest mountain pass connecting two valleys. The TS will have one (and only
one) direction of downward curvature, which points in the direction of the reactant
minimum on one side and the product minimum on the other. In all other directions,
the TS will have local upward curvature. A stationary point (a point where the first
derivatives are zero) with this topology is known as a first-order saddle point. A nth-
order saddle point has n directions of downward curvature. In terms of the Hessian,
this means that the TS will have one (and only one) negative Hessian eigenvalue and
all of the other Hessian eigenvalues will be positive. Since the Hessian is the system’s
force constant matrix and the vibrational frequencies are proportional to the square
root of the eigenvalues of the mass-weighted Hessian, the TS will have one (and only
one) imaginary frequency. The eigenvector corresponding to the imaginary frequency
is known as the transition vector because it corresponds to molecular displacement
along the reaction path through the TS.

A number of good reviews on TS optimization have appeared in recent years [9,11,
12,21,23-25,128]. In this section, we provide an overview of the three general classes
of TS optimization methods—local schemes (Section 10.4.1), climbing, bracketing,
and interpolation algorithms (Section 10.4.2), and path optimization approaches
(Section 10.4.3). In Section 10.4.4 we discuss practical considerations related to TS
optimization and offer suggestions for difficult cases.

10.4.1 Local methods

Many of the standard minimization algorithms presented in Section 10.3 can be modified
to find TSs. Such methods are commonly referred to as local methods. Unfortunately,
simple applications of QN methods are often unsuccessful in TS searches. The problem
stems from the fact that they will only converge to the TS if the initial guess falls within,
or very near, the quadratic region of the true TS, which is generally much smaller than for
a minimum. This means the error tolerance in the starting structure is much less for TS
optimization than for minimization. Therefore, it is necessary to ensure the Hessian has
an appropriate eigenvector with a negative eigenvalue for a QN step to move closer to the
desired TS. Despite these difficulties, good chemical intuition (sometimes along with a
bit of luck) can provide adequate guesses for TSs to be found using local methods.

The adaptation of most minimization algorithms, such as QN and GDIIS, for TS
optimization is rather straightforward [68—71,93-95]. Just as with minimization it is
common to use Hessian updating. Unlike minimization, though, the BFGS updating
scheme is unacceptable in TS optimization because it forms positive definite Hessians.
When the Hessian becomes negative definite, as is the case near the TS, the BFGS
formula becomes ill conditioned [129].
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The Murtaugh—Sargent update, which was already discussed in Section 10.3.1, is one
option [79,130,131]. Another common choice is the Powell-symmetric-Broyden (PSB)
update, which was first recommended for TS optimization by Simons et al. [132]. A PSB
updated Hessian is given by

HPSE — (Ag — HO9AX)AX' 4 Ax(Ag — HYAx)! _ Ax'(Ag — HO“Ax)AxAx'
Ax'Ax (AX'Ax)?

Bofill [79,89,129-131,133] has developed a hybrid updating scheme with better
performance for TS optimization. The Bofill update mixes MS and PSB solutions giving

A

(36)

AHPM = gAH™S + (1 — H)AHT® (37)
where

_ (Ax'(Ag — HMAX)Y

=30 (Ag — HYYAx)?

(38)

and AH™S is given by Eq. (20).

10.4.2 Climbing, bracketing, and interpolation methods

Since local methods will, in general, only succeed in finding a TS if the initial geometry
lies within the quadratic region of the first-order saddle point and the initial Hessian has
an appropriate eigenvector with a negative eigenvalue, the fate of TS optimization by
local methods rests in one’s ability to apply chemical intuition to problems that, at an ever
increasing rate, are anything but intuitive. To overcome this difficulty, a number of
methods have been developed that automate thc initial guess procedurc for TS
optimization. Using information provided by the user, these algorithms produce an initial
guess at the TS by climbing uphill from one minimum, or by bracketing or interpolating a
TS between the reactant and product minima. After the region of the TS is located by one
of these methods, the structure can be improved using local TS optimization. Again, the
literature abounds with climbing and walking, bracketing, and interpolation schemes [26,
84,132,134—152]. Here, we will consider coordinate driving, shallowest ascent and
walking up valleys, linear and quadratic synchronous transit, synchronous transit-guided
quasi-Newton, and ridge following.

For a limited number of reactions, the reaction pathway can be described by a scan of
the PES along one (internal) coordinate. The most prevalent classes of reactions falling
into this category are conformation and bond dissociation reactions, where a change in a
torsion angle describes the reaction for the former and a bond stretch coordinate describes
the latter. Climbing methods making use of this principle are often referred to as
‘coordinate driving’ algorithms. Beginning at a PES minimum (i.e. the reactant or
product), the method traces a path along the coordinate of interest by incrementing its
value from reactant to product minima. At each increment, the energy of the new
structure is calculated and the highest energy structure on the pathway is taken as an
estimate for the TS, which can be used in a local TS optimization calculation. Since other



Finding minima, transition states, and following reaction pathways 221

internal coordinates are affected by changes in the driven coordinate, most applications of
this approach include a constrained optimization of the other N — 1 coordinates at each
increment. This provides a much better guess than a rigid scan. Although coordinate
driving can yield a good estimate for the TS, it can be costly if small increments are
necessary. Additionally, constrained optimization at each step will increase the
computational cost since multiple energy and gradient calculations will be required at
each point in the scan. If more than one coordinate are involved in the reaction,
coordinate driving will not provide an adequate estimate of the TS. Further difficulties,
such as discontinuities, can be encountered if the reaction path is strongly curved
[153—155]. The reduced gradient following (RGF) method is an improved version of
coordinate driving that is better able to handle curved reaction paths [156—161]. The
RGF approach works by defining a path that connects stationary points on the PES
according to the differential equation

L X0l _
lgx(n)1l

At each point in the RGF point, the gradient, g, has a constant direction given by the
unit vector r. Typically, this direction is chosen in a similar manner to the coordinate
driving algorithms. As we will see in Section 10.5, the second term in Eq. (39) comes
from the steepest descent path definition used in reaction path following [162].

An alternative to coordinate driving is the ‘shallowest ascent’, ‘eigenvector following’
or ‘walking up valleys’ approach [26,84,132,134—137,143-145]. There are two general
flavors of walking up valleys algorithms—one requires the structure of either the reactant
or the product, while the other uses the structures of both minima. Starting at one
minimum, one can walk uphill along the shallowest ascent direction by following the
Hessian eigenvector corresponding to the lowest eigenvalue. The need for the Hessian at
each step can make this method costly. As a result, most implementations employ
Hessian updating. In order to assure that the shallowest ascent direction is followed, and
to minimize along all other directions, methods similar to RFO and TRM have been
implemented. In this way, each step is defined according to

(39)

Ax=—H- D 'g (40)

The parameter A is chosen such that (H — AI) has only one negative eigenvalue and the
step has an appropriate length. The use of Eq. (40) is also at the heart of successful local
TS optimization methods and greatly expands the radius of convergence for TS
optimization. Different values for A can be used for the directions corresponding to the
uphill climb and the downhill minimization [83,85,134]. However, following the
shallowest ascent path may not necessarily lead to the correct TS. This issue is addressed
by considering the model surface shown in Fig. 10.1. Although the shallowest ascent
pathway from Product A correctly leads to the TS connected to the reactant, the
shallowest ascent pathway from the reactant does not head toward the same TS. Instead,
it leads to Product B.

Another interpolation mcthod using structural information from thc reactant and
product minima is linear synchronous transit (LST) [139]. These two points on the PES
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can be used to form a rough approximation for the reaction pathway by interpolating a
line between them. The maximum (in terms of energy) along this line serves as an upper
bound to the TS. Although the Hessian at the LST maximum often has more than one
negative eigenvalue, it is usually a satisfactory estimate for the TS and can be refined
using a local optimization method.

An improvement to LST is incorporated in the quadratic synchronous transit (QST)
method [139,148,149]. QST begins with the LST maximum and minimizes perpendicular
to the LST path. Then, a new quadratic pathway is interpolated using this new
approximate TS, the reactant, and the product. The maximum point on the QST pathway
is located and serves as the QST estimate for the TS. For some reactions the LST and
QST estimates can be quite similar. However, systems with curved reaction paths can
show significant differences between the LST and QST estimates. As before, the
estimated TS can be refined by a local method, using Eq. (40) to control the step size and
direction. A variation of QST is synchronous transit-guided quasi-Newton (STQN) [138],
which directly combines QN with LST or QST. STQN also uses the arc of a circle for the
estimated path. The algorithm takes a limited number of initial steps to maximize the
energy along the LST or QST path, and then heads toward the TS using the Hessian
eigenvector that overlaps best with the LST/QST path. The Hessian eigenvalues are
adjusted according to Eq. (40).

Fig. 10.5 shows the LST and QST pathways and their estimated TSs on a model PES.
For some reactions, for instance Reactant — Product B, both pathways agree. For other
reactions, for instance Reactant — Product A, the LST pathway can differ from the QST
path. It is clear that for the latter case the QST estimate for the TS is much closer to the
actual TS. For some reactions with strongly curved paths, QST and STQN
interpolations can be enhanced by a user-supplied guess at the TS that differs from
the automated search result [138].

Transition State A
Maximum on LST

Maximum on LST

Fig. 10.5. Model potential energy surface illustrating linear synchronous transit (LST) and quadratic
synchronous transit (QST) paths (from Ref. [72] with permission).
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The ridge following method of Ionova and Carter [146,147] can be viewed as another
modified version of LST. This approach begins with reactant and product structures and
interpolates a line between them. In the same way as LST, an initial estimate for the TS is
determined by finding the highest energy point on the linear path. Instead of feeding this
point into a local method, the ridge following algorithm now picks two points on the LST
pathway that lie on either side of the estimated TS. The distance between these points is
kept small, and they are both allowed to move downhill toward the reaction path. Each
step in the progression toward the reaction path and the TS is controlled by side step
followed by a downhill step. Let x¢ and x? be the structures of the two points that straddle
the TS ridge, where a maximum energy structure X; exists on the line (x?, x?). The side-
step portion finds two new points, x}’/ and xf”, which are on the line (x¢, x?) and are found
according to

b

X\ = +sp), X = —sp) 1)
where
xf?l - xf‘/
pi = ] (42)
and s is a side-step step size. The downhill step is then given by
xia=x' —ugl,  x=x —ug! 43)

where u is the size of the downhill step, g? and g’ are the gradients at x?l and xf’/, and x{,
and x2 .1 give the next set of structures along the ridge. Alternatively, the step can be
taken along the gradient at x;. In either case, it can be shown [146] that unless the
gradient at x; is zero, values of s and u can be chosen such that there is a maximum of
energy on the line connecting the next set of points, x,f" and x?’, and that this energy is
lower than the maximum on the line connecting the previous set of points. One can think
of this process as a constrained optimization following the ridge from a second-
(or higher-) order saddle point to the first-order saddle point. When the component of the
gradient perpendicular to the line between the two points is zero, or very near zero, they
lie close to the reaction path and an intermediate point between them provides a very
good estimate for the TS. A local TS optimization method can then be used to converge
the ridge following TS to the stationary point.

A novel interpolation method proposed and refined by Jensen and others uses MM or
valence bond PESs [140-142,150-152]. Earlier we mentioned that most MM methods
do not properly describe reactive systems. This is due to the fact that atom types and
molecular connectivity define the force fields generating the MM PES. Therefore, motion
on the PES involving bond breaking or bond making is discontinuous. Jensen’s approach
makes use of this characteristic and treats the MM PESs of the reactant and product as
separate surfaces that intersect and form a seam. One can then find the minimum on this
seam and use the corresponding molecular configuration as the initial guess for the TS,
which is optimized using a local TS optimization method on an electronic structure PES.
The problem of finding this pcint on the intersecting seam is equivalent to the task
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of finding points of closest approach and minima on seams between different electronic
state PESs (see Section 10.3.4) [115-123].

10.4.3 Path optimization methods

Clearly, the principle obstacle to interpolation methods is the choice of the approximate
reaction pathway. A series of methods have been developed to find not just the TS, but
the entire MEP. As a class of algorithms, these approaches have been called chain of
states and path optimization methods [163]. Starting with the reactant and product
structures as input, these methods search for the MEP by minimizing the energy of a
number of points, known as images, which lie on an initial interpolated pathway. As a
result, many energy and derivative calculations are required for each image making path
optimization methods generally much more expensive than interpolation methods.
However, path optimization provides a means for finding TSs while simultaneously
elucidating the MEP (or at least a good approximation) without a priori knowledge of
the TS or the curvature of the reaction path, making it an effective and robust alternative
to the other approaches discussed above. Path methods are especially useful for difficult
problems where the previously described methods fail to converge to a first-order saddle
point or the TS of interest.

In this section, we begin by outlining the elastic band theory of Elber and Karplus
[164], which forms the basis for most, if not all, of the development of chain-or-states
methods. We then outline two popular methods that correct some of the failures of elastic
band theory: the nudged elastic band (NEB) method [165] and the path optimization
algorithm of Ayala and Schlegel [166]. Lastly, we consider approaches that develop the
reaction pathway by growing separate paths from the reactant and product minima, which
have been referred to as growing string methods [167]. Using any of these algorithms
provides an estimate for the TS that is usually quite good (as opposed to the rough
approximation to the TS provided by LST). Nevertheless, full TS optimization using a
local approach is still advisable if one wishes to elucidate an accurate barrier height or
characterize the TS geometry.

The elastic band method developed by Elber and Karplus [164] is based on the
minimization of a line integral, which has the form

1 (9
S(qi, )L = 2 [G(g)di ()], (44)
q;

where S is the objective function (the function that will be optimized), q; and ¢y are the
coordinates for the initial and final structures in the reaction (i.e. reactant and product
configurations), G is a vector that is a function of the system coordinates given by

and dl(q) is an infinitesimal line segment on the path L of length L. In Eq. (45) u; is a unit
vector in the direction q; — q;;. The path L begins as the initial guess at the reaction
path, which we seek to modify and relax to the MEP. In order to find the path L that
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minimizes S, Eq. (44) must be discretized. This results in a series of M points, q, through
qur, being placed along L between the reactant and product structures, gy and 1.
Substituting Eq. (45) into (44) and discretizing yields

1 M
S0, W) = 7 D EurAl (46)
j=1

where

Substitution of Eq. (47) into Eq. (46) gives
1 M
S(Qo, Gpr 1)1 = I ZEj[j (48)
i=1

In the original implementation, Elber and Karplus also found it necessary to add two
penalty functions to Eq. (44) that avoid rotation by the images and also keep the images
from collecting to one location on the path, i.e. in the minima wells and flat regions of the
path [168]. Other pitfalls of the elastic band method include a failure to actually converge
to a reaction pathway without a large number of images and for the path to develop kinks
and to turn back on itself. Subsequent work by Elber and coworkers [164,168—171] and
others [172—175] sought to correct these difficulties and resulted, most notably, in the
development of the self-penalty walk [168—171] and locally updated planes algorithms
[168,171]. However, most present-day implementations of the basic ideas put forth in
elastic band theory are best encapsulated in discussions of the path optimization [166]
and NEB approaches [165,176].

In the path optimization method [166] a series of constrained optimizations is used to
find the transition state and points on the steepest descent reaction path. The path is
relaxed by applying a QN-like optimization scheme on each image in turn, in a manner
resembling the reaction path following algorithm developed by Gonzales and Schlegel
[177,178] (see Section 10.5.2). Microiterations are used to simultaneously relax the
images toward the reaction path and maintain even spacing. The highest energy point on
the path is optimized to the TS using a modified version of the STQN optimization
algorithm discussed in Section 10.4.2 [138]. Additionally, an initial guess for the TS can
be provided by the user to better define the initial path.

The original elastic band approach places ‘springs’ between successive images to
prevent them from falling down into the minima. Adding the springs, with a force
constant k, gives the objective function, S, as

M M k )
@0 W+ = D B+ > (49)
j=1 j=1

Many of the problems with elastic band theory are rooted in this definition and their effect
on the relaxation of the path. The effective elastic band force acting on image j, F}EB, in
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this method is a modified force that is dependent upon k,
F® — F, + F}P"® (50)
where

FP™8 = (kL — k) (51)

Recall that F = —dE/dx. The first term in Eq. (50) is the ‘true’ force and the second term
is known as the ‘spring’ force. If & is too large the elastic band becomes stiff and the final
path will not converge to the MEP. Instead, the elastic band path will cut corners. If k is
too small, the images begin to slide down the path to the two minima wells.

A simple correction to these problems is achieved by projecting out the parallel (with
respect to the path) component of the true force and the perpendicular (with respect to the
path) component of the spring force before evaluating Eq. (50). In this way, the images
are ‘nudged’ in the optimal direction, i.e. toward the MEP, while the springs carry out
their intended responsibility. Hence, the method is known as NEB [165,179]. Now, the
effective force is given by

Fi® = (1= - 4)F; + (-7 62

where 7 and 7, are unit vectors pointing parallel and perpendicular to the path. The
definitions of 7} and 7, can greatly affect the success of an NEB calculation and a number
of different definitions have been contemplated and applied [165,179]. Regardless of the
choice for the tangent vectors, NEB tends to maintain good spacing along the path.
However, NEB is not without its problems. In order to get a smooth path a large number
of images are often required, which in turn makes NEB a very costly method.
Furthermore, the standard implementation of the method relaxes the path using the
velocity Verlet algorithm, a scheme used in classical dynamics. The result is that many
path relaxation iterations are often necessary before convergence is satisfied.
Modifications to NEB have included dynamic adjustment of the end points to focus on
regions of specific interest and choosing one image to climb uphill toward the TS [176,
180]. The L-BFGS algorithm (see Section 10.3.1) can be employed in the image
relaxation steps to decrease the cpu and memory cost of NEB [181-183]. Another
efficient extension of NEB, known as the replica path scheme, has been developed by
Brooks and coworkers [184]. All of these developments dramatically cut down on the
total cost of the calculation by leading to faster and more stable path convergence.
Another class of TS optimization algorithms is based on a ‘burn the wick from both
ends’ principle. These methods begin at the reactant and product minima and grow two
pathways that communicate and simultaneously head toward the TS. These approaches
are possibly best described as hybrids of path optimization and bracketing philosophies.
They have been included here in order to draw on the ideas presented above and also
because the calculation yields an estimate for the reaction pathway that, in many cases, is
a very good approximation to the MEP. In this regard, these methods are very similar to
the path optimization schemes just discussed. The most basic application of this idea was
originally encompassed by the saddle method [144], which begins by considering the
coordinates of the reactant and product structures, R and P, which are a distance 8 apart
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on the PES. Let R’ and P denote the coordinates of the current step in the reactant and
product valleys, respectively. One can simultaneously walk up these two valleys by
letting the lower energy structure take a step that decreases & by a small amount
(i.e. 5—10%) followed by a minimization that constrains the distance between R’ and P'.
This process is repeated enough times to converge to an estimate for the TS. Similar
methods present in the earlier literature include the sphere optimization technique [185]
and the locally updated planes method [168].

The most recent addition to this category of TS optimization methods is the growing
string approach of Peters et al. [167]. The growing string algorithm is based on a modified
version of the string path optimization scheme, which redistributes the images along the
interpolated pathway after each minimization step [186]. In the simplest case, the
redistribution step uniformly spaces the images along the path. This step can also
distribute the images in an uneven manner. For instance, a higher density of images can
be used near the TS or regions of the path with large curvature. Additionally, the number
of images can be dynamically modified during the calculation. The growing string
method makes use of all of these options by growing two strings, one from the reactant
well and one from the product well. These individual strings are allowed to relax and the
images along each string are redistributed after each step. When the force normal to the
path is small at a frontier image (the image on each string closest to the TS), an additional
image is added to the local string. After the two frontier images are close to each other,
the two strings are merged and the TS optimization can be completed using a local
method. This method has been shown to require fewer energy and gradient calculations
than traditional path optimization schemes [167], making it an attractive alternative to the
path optimization algorithms already discussed.

10.4.4 Practical considerations

In this section, we consider a few points related to the practical application of the methods
described above for TS optimization. The factors affecting TS optimization are the same
as for minimization: the starting structure provided by the user, coordinate system,
algorithm choice, initial Hessian, and quality of the updated Hessian. Since the points
made in Section 10.3.5 are also valid for TS optimization, we do not restate them here.
Instead, we focus on specific issues unique to TS optimization and recommend that the
reader first read Section 10.3.5. This section also contains suggestions for difficult TS
problems.

10.4.4.1 Building an initial structure

For local methods, it can be difficult to build a guess at the TS structure. Using a guess at
the TS is also useful for interpolating, bracketing, and path optimization methods.
However, generating an initial structure of a TS is usually non-trivial. Unlike minima,
there are no direct experimental observations of TS geometries. Instead, the best tools
available to computational chemists for this purpose are chemical intuition and the
theoretical literature. Over the past two decades, thousands of optimized TSs have been
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reported in the literature for a vast array of reaction classes. Here, we offer some general
suggestions based on these data and our own experience.

Initial TS structures for unimolecular reactions, such as ring closures, hydrogen
transfers, internal isomerizations, etc. are most easily built after the reactant and product
structures have been minimized. Using these two structures, a TS guess can be made by
choosing a molecular configuration lying between the two ground state structures that
lines up along a reasonable reaction pathway. The requirement that the structure lie along
a reasonable reaction pathway is crucial to the success of the TS optimization. For
instance, consider the rearrangement reaction HCN — HNC. Both minima are linear, and
choosing a structure that lies exactly between them (i.e. by averaging the Cartesian
coordinates) produces a configuration that places the H atom in the middle of the C—N
bond. Obviously, this is not a viable TS. A more reasonable reaction path has the H atom
moving in a arc starting where the H atom is bonded to C and the H-C—N angle is 180°,
passing through a structure where the H atom lies above the C—N bond and the three
atoms form a triangle, and finishing with the H atom bonded to N and the C—N-H angle
is 180°. A suitable guess for most bimolecular reactions can be generated by setting the
lengths of the bonds being formed to 80—120% longer than equilibrium [52].

When the cost of a frequency calculation is reasonable, it can be useful to evaluate the
Hessian for the TS guess structure. The purpose of this calculation is twofold: (1) to see if
the initial guess has one, and only one, imaginary frequency; and (2) to see if this
imaginary frequency corresponds to a reasonable displacement given the reaction being
studied. If the guess structure does not have any imaginary frequencies, using a rigid scan
along the perceived reaction coordinate and taking the highest energy structure in the scan
can often yield an appropriate guess. For cases where multiple imaginary frequencies
exist, there are two options. The first option, which is best when the largest magnitude
imaginary frequency corresponds to the reaction coordinate and the other imaginary
frequencies are much smaller in magnitude (i.e. one or more orders of magnitude
difference), is to use this structure and carry out the TS optimization nevertheless. Often,
the other imaginary frequencies will relax and the optimization algorithm will find the
correct TS. The second option is to freeze the internal coordinate(s) corresponding to the
reaction path and minimize the structure for a few steps (~ 10-20). This approach is best
when the reaction coordinate has an imaginary frequency that is not the largest in
magnitude or the additional imaginary frequencies are the same order of magnitude as the
correct imaginary frequency. After a few steps of minimization the Hessian can be
reevaluated. If the erroneous imaginary frequencies have become real or the conditions
for the first option are met, the current structure can be used for the TS optimization.
Otherwise, the process should be repeated.

10.4.4.2 Coordinate system

The coordinate system choice is also important in TS optimization. As with
minimization, redundant internal coordinates have been shown to be the best choice
for TS optimization [52]. Table 10.5 compares the number of optimization steps required
for convergence using the three-structure STQN method with Z-matrix and redundant
internal coordinates. Clearly, redundant internals work best. In Section 10.3.5.2, we
advised that users check the redundant internal coordinate definitions to ensure all of
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Table 10.5 Comparison of the number of steps required to optimize TS geometries
using three point STQN with various coordinate systems

Reaction® Z-Matrix internals Redundant internals
CH;0 — CH,OH 9 9
SiH, + H,> — SiH, 11 8
C>HsF — C,H, + HF 15 11
Diels—Alder reaction 23 14
Claisen reaction 15 15
Ene reaction 28 18

“For complete details see Ref. [51].

the coordinates are included in the definitions. The same issue arises in TS optimization.
It is imperative that the redundant internal definitions include all of the coordinates
relevant to the reactant and the product. Methods using these structures in their input can
generate the union of the reactant and product internals for the TS coordinate definitions.
However, local methods are not able to make use of that additional information and other
coordinates will often need to be defined.

10.4.4.3 Algorithm choice

The algorithm chosen to carry out a TS optimization can dramatically affect the success
of the optimization and the efficiency of the calculation. Unfortunately, a thorough
comparison of all of the methods discussed above is not yet available in the literature and
is beyond the scope of this review. Nonetheless, Table 10.6 is included to show a general
comparison of the efficiency of local, interpolating, and path optimization methods.
Specifically, we have used the QN local TS optimization, three point STQN, and path
optimization approaches. The interpolating method has roughly the same cost or less cost
than the local method. For the ene reaction, the local method is unable to optimize to the
TS while the interpolating algorithm converges to the proper TS within 20 steps. The path
optimization method also performs well. However, the path method requires many more
energy and derivative evaluations since it must compute this information for each image
each time a step is taken.

Table 10.6 Comparison of the number of gradient evaluations required to complete TS optimization
using a QN with RFO, three point STQN methods, and the path optimization®

Reaction QN with RFO Three point STQN Path optimization
CH3;0 — CH,0OH 12 9 51
SiH, + H, — SiH, 11 8 47
C,HsF — C,H, + HF 16 11 73
Diels—Alder reaction 56 14 41
Ene reaction Fail 18 101

“For complete details see Refs. [138,166].
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10.4.4.4 Hessian quality

The quality of the Hessian significantly affects the behavior of TS optimization.
Generally speaking, the cost issues raised in Section 10.3.5.4 also hold for locating TSs.
One notable difference for TS optimization is that the ability of the algorithm to converge
to a first-order saddle point is much more sensitive to the initial Hessian quality. For this
reason, using an analytic Hessian at the start of the optimization is very useful, provided
that the cost of the Hessian is not too large. Analytic Hessian calculations can be
prohibitively expensive for many systems. In these cases, an empirical Hessian can work
well provided that it has a suitable negative eigenvalue and eigenvector. Another method
often used to generate the Hessian is to use second derivatives computed at a lower, and
cheaper, level of theory. For example, a HF/3-21G Hessian can be used at the start of a TS
optimization at the HF/6-311G(d) level. An alternative approach is to analytically or
numerically calculate the rows and columns of the Hessian that are important in the
reaction coordinate [52,80,138]. The other elements can be determined using standard
force field estimates [127].

10.4.4.5 Verifying TSs

After a TS optimization has completed, it is always necessary to verify the structure.
Verification of a TS consists of two steps. First, the Hessian must be evaluated at the
optimized structure and diagonalized to ensure that there is one, and only one, negative
eigenvalue. The second step in verifying an optimized TS is to test if the saddle point lies on
a path connecting the intended reactant and product minima. This task is readily
accomplished by employing reaction path following (see Section 10.5) and/or by
visualizing the displacement along the vibrational mode corresponding to the imaginary
frequency. For instance, consider the rearrangement reaction of HCN — HNC.
Visualization of the TSs imaginary frequency clearly shows movement of the H atom
from C to N. Some reactions have curved reaction paths and visualization of the TSs
imaginary frequency may not directly indicate that the 'I'S is connected to the reactant and
product. In these cases, reaction path following is required. If either verification test fails,
the optimized TS is not a valid structure and the search for the proper structure must be
restarted.

10.5 REACTION PATH FOLLOWING

After a TS has been located, it is necessary to confirm that it lies on a pathway connecting
the requisite reactant and product. This can be done by following the path of steepest
descent downhill from the TS to reactant and product PES minima. Following the
reaction path can also show if any intermediates lie between the reactant and product. A
reaction path determined in isoinertial coordinates (i.e. a coordinate system where all of
the coordinates are scaled to have the same reduced mass) is known as a MEP [187—191].
Using the structure and vibrational frequencies at the TS, one can apply TST to determine
rates of reaction. Knowing the MEP, especially near the TS, allows one to employ more
sophisticated methods for determining reaction rates such as VIST and RPH methods
[3-7]. Gradient extremals [137,192—196] also define paths across PESs, but because
they do not necessarily connect stationary points as directly as MEPs we do not consider
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them further in this context. Also beyond the scope of this review are methods that
determine the free energy along an MEP [114,197-205]. Interested readers should
consult the literature.

The actual path mapped out by the MEP on the PES is dependent on coordinate system.
However, changes in coordinate system do not alter the nature of the stationary points on
the PES (i.e. minima, TSs, etc.). One coordinate system, mass-weighted Cartesian
coordinates (see Section 10.2.3), is especially significant for reaction dynamics, and the
MERP in this coordinate system is known as the intrinsic reaction coordinate (IRC) [162].
In this section, we use the terms MEP, IRC, steepest descent path, and reaction path
synonymously.

The starting point for mathematically defining the MEP is a Taylor expansion of the
PES.

1
E(X) = EO + goAX + EAXtHOAX + .. (53)

In Eq. (53), E(x) is the energy at point x and Ey, gy, and Hj are the energy, gradient, and
Hessian at the point x,. It is convenient to think of the MEP as a one-dimensional slice
through the PES. Defining the parameter s, which is dependent on x, as the arc length
along this one-dimensional slice gives rise to another Taylor series.

x(s) = x(0) + v°(0)s + %vl(on2 + évz(O)sz +--- (54)

In Eq. (54), v* and v' are known as the tangent and curvature vectors. The tangent vector
is given by

_ dx(s) _ _ g@s)
ds lg(s)!

v2(s) (35)

Eq. (55) is the differential equation solved when following reaction paths. The curvature
vector in Eq. (54) is given by
Hv? - (""HyOW?

lg(x)!

vi(s) = - (56)

The magnitude of the curvature, k, is equal to the inverse of the radius of curvature, R

| 1
k=lvl= R (57)
Large curvature indicates the reaction path is undergoing a tight turn, and small curvature
corresponds to a shallow turn.
At the TS, where the gradient is zero, Egs. (55) and (56) become ill defined and the
tangent is equal to the Hessian eigenvector corresponding to the negative eigenvalue—
this eigenvector is known as the transition vector. The curvature at the TS is given by

vi(s) = —[H® — @"HOI I FWY — @"Fv0) (58)
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where
Fj = > Fun} (59)
k

Since the MEP is defined by an ordinary differential equation (ODE), standard
numerical integration techniques can be used. The basic idea behind any numerical
integration algorithm is to rewrite dx and ds as Ax and As. In this way, the solution to
Eq. (55) is given by a discrete set of points, {x;}, which are found by ‘stepping” along the
path with a step size of As. Although Eq. (55) appears to be rather benign, it can display
stiff behavior [206] and be difficult to solve, especially in the regions where the gradient
is very small. Therefore, solving Eq. (55) requires special care, and a number of
specialized methods have been developed and reviewed in the literature [10,23,24,72,
128,177,178,207-217]. Generally speaking, numerical methods for integrating ODEs
are classified as either explicit or implicit. Explicit methods use only information at the
current point to define the position at the next point, while implicit methods use
additional information from the next point, which typically means that these methods
include some sort of iterative algorithm to converge the end point of each step.

Because the integration is numerical, different integration schemes yield different
degrees of accuracy (i.e. the proximity of the points to the true MEP). The accuracy of a
numerical integrator is defined by an order (i.e. first order, second order, etc.). The order
of the integrator gives the highest order term in the Taylor expansion of the true solution.
Hence, first-order methods give the correct first-order term in Eq. (54), second-order
methods give correct first- and second-order terms in Eq. (54), and so on.

In the following sections, we describe some common methods for solving the reaction
path equation and also discuss some interesting features and properties of MEPs. In
Section 10.5.1, first-order methods are described. Included in the discussion are the
explicit Euler integrator and its implicit and stabilized versions [212,213,216]. Second-
order methods are considered in Section 10.5.2. There, we focus on the local quadratic
approximation (LQA) method [214,215], the second-order Gonzalez—Schlegel algorithm
[177,178], and the Hessian based predictor—corrector integrator [177,178,210,211].
Higher order methods are considered in Section 10.5.3 [209,214]. Path following
methods based on classical dynamics, known as dynamic reaction path (DRP) methods
[218-221], are discussed in Section 10.5.4. Lastly, in Section 10.5.5, we have included
some practical considerations and common troubleshooting tips related to reaction path
following calculations.

10.5.1 First-order methods

Perhaps the simplest integrator (both conceptually and in terms of coding) is the Euler
method. This method is correct only to the first-order term in Eq. (54) and gives the next
point in the integration, X;,, as

< — g(x;)
b lgx)l

As =x; + v?As (60)

Xit1 =
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In the limit of infinitesimally small step size, Euler integration yields the exact MEP.
However, in practice Euler integration suffers from a number of pathologies. The steps
taken in an Euler integration are linear, meaning that the Euler path will deviate from the
true reaction path wherever the MEP is at all non-linear. Indeed, Euler integration is
notorious for developing wild oscillations back and forth across the true solution for
larger step sizes. This pathology is especially apparent in regions where the path
curvature is large or where the slope along the path is small. As a result, reaction path
following calculations using Euler integration must use very small steps. The problem,
though, is that calculations using a small step size require a large number of energy and
gradient evaluations (one energy and gradient evaluation is needed per step), which may
be quite costly for moderate to large systems.

To combat this problem, Ishida, Morokuma, and Komornicki (IMK) developed the
Euler stabilization (ES) algorithm {212]. The IMK algorithm is shown in Fig. 10.6a. Each
ES step can be broken into two parts. First, an explicit Euler step, i.e. Eq. (60), is taken
from x; to x*, where the energy (E*) and gradient (g") are both evaluated. The second
piece of ES is to stabilize the Euler step by minimizing the energy along the line bisecting
the angle between (x; — x") and g*. The minimum on the bisector is chosen as x;,;, and
the next ES step starts from there. In cases where the angle between (x; — x) and g is

(@)
0
i+l

—_—F O__ % *
<K= i a(—vi—g, /185D
.

(b)

()

- (0}
X =X 12v) A

Fig. 10.6. Schematic representations of implicit reaction path following integrators: («) Ishida, Morokuma, and
Komornicki: (b) Miiller—Brown; and (c) second-order Gonzalez and Schlegel (from Ref. [72] with permission).
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nearly linear or when small step sizes are used, the stabilization step must be omitted.
Although ES is much more stable than explicit Euler, difficult regions of the PES can still
be problematic and cause oscillations in the ES pathway.

Another first-order method developed to overcome the problems of explicit Euler
integration is the Miiller—Brown (MB) method [213]. The MB method makes use of the
implicit Euler integrator. Here, the step depends on the gradient at the endpoint, which
is unknown. To find the endpoint of each step, a constrained optimization is required.
The MB step begins with an explicit Euler step. Then, the energy is minimized
according to the constraint that the distance between the starting and ending points
remains constant

Ix; — x;411 = As (61)

Fig. 10.6b shows, schematically, the MB method. The gradient at the endpoint after the
constrained minimization will be parallel to the step direction, (x; — x;, ). Therefore,
the MB step can be given by

X,-_H - X,‘ —giAs = X,‘ + V?+1AS (62)

|gi+1|

10.5.2 Second-order methods

Second-order methods have also been proposed in the literature for integrating MEPs.
Although a standard numerical integrator, such as the second-order Runge—Kutta
method, could be used, it is generally accepted that a more effective approach is to
directly expand the PES as a second-order Taylor series. Truncating the Taylor series in
Eq. (53) at the second-order term and differentiating gives

g(x) = go + HpAx (63)
Substituting Eq. (63) into Eq. (55) gives the LQA of Page and Mclver [213-215], which
is an explicit second-order integrator.

dx(s) g + HpAx
= - 64
ds |g() + HoAX' ( )

In practice, Eq. (64) is integrated by parameterization and casting the problem in the
Hessian eigenvector space. Sun and Ruedenberg [217] have modified the LQA
algorithm by using each point, Xx;, as the midpoint in the integration range, rather than
the endpoint.

Gonzalez and Schlegel developed an implicit second-order integrator for reaction path
following (GS2) [177,178], which is shown in Fig. 10.6¢c. Each GS2 step consists of two
components. First, an explicit Euler step of length %As is taken from the current point, x;,
to a pivot point, x*.

N 1
X =x;+ EV?AS (65)
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The second piece of a GS2 step begins by taking an additional step of length %As from
the pivot point to the end point, x; . The energy, E(X;, ), is minimized using QN under
the constraint that

. 1
IXH—] - X*| = EAS (66)

At the end of the optimization, the component of the gradient perpendicular to Ix;,, — x*I
is zero. Just as with the MB implicit integrator, the GS2 step can be written in terms of the
tangent at the initial point, x;, and at the final point, x;,,.

_log 1 ogiy
2Tg1™ T 2Tgl

Eq. (67) is similar to the implicit trapezoid approach for integrating stiff differential
equations, except that the GS2 method utilizes optimization to obtain x;, . It should be
noted that no energy or derivative calculations are necessary at the pivot point.
Furthermore, since

1 1
Xir1 = X; As = X; + EV?AS + EV?_HAS (67)

. « 1
|X* - X,‘l = |X,’+1 - X‘| = EAS (68)

the points x;, X", and x,,; form an isosceles triangle. By construction, two tangents to a
circle form an isosceles triangle. Therefore, the GS2 algorithm will follow an arc of a
circle exactly.

Recently, Hratchian and Schlegel (HS) introduced a second-order predictor—corrector
reaction path following integrator [210,211]. A related algorithm has also been used for
integrating ab initio classical trajectories [222,223]. Predictor—corrector integrators, as
their name suggests, couple two different integration methods. The predictor integrator
moves from the current point, X;, to a guess for the next point, x;,;. Using information
(e.g. energy and/or derivatives) at the predicted X, |, the corrector integrator re-integrates
over the same interval and refines, or corrects, X;;,. The basic idea is illustrated in
Fig. 10.7. The HS method uses LQA for the predictor step and a modified Bulirsch—Stoer
integrator [206,224-227] for the corrector step. The corrector step increases the stability
of LQA and allows for large steps without loosing accuracy. Bulirsch—Stoer integration
requires several gradient evaluations per step, which would make direct use with
electronic structure methods quite costly. To overcome this bottleneck, the HS integrator
uses the positions, energies, gradients, and Hessians at x; and the predicted point, x,_ ;, to
construct a local analytic surface. The Bulirsch—Stoer corrector integration is carried out
on this fitted surface. Relative to the cost of electronic structure energy and derivative

£ - EygxnH, E H

»&p 1ty predictor step X, predictor step > &0t
Ox ]/:;( J: ) x,
o— corrector step corrector step

Fig. 10.7. Schematic representation of predictor—corrector integration, such as the integrator used in the
Hratchian—Schlegel method (from Ref. [223] with permission).
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calculations, energy and gradient evaluations on the fitted surface are free and the
corrector step adds a negligible cost to the standard LQA calculation, which is more than
compensated for by the larger step sizes that the HS algorithm allows. In the current
implementation, HS fits the LQA data to a distance weighted interpolant surface for the
corrector integration [228-231]. The energy on this surface, Epwy, is given by

Epwi = w;T; + w1 Tipq (69)

where T; and T, are Taylor expansions about X; and X;,, respectively. These Taylor
expansions,

1
Ti(x) = E; + gi(x — x)) + E(X —x)' Hi(x — xy),

(70)
1
Ti1(X) = Eip + g (X — X)) + E(X = X ) Hi(X = X;41)
are weighted by w; and w;,
lx — x,)I? l(x — x;,.p)I?
w; Wir +1 (71)

- |(X - Xi)|2 + I(X - Xi)|2 ’ - }(X - X,‘+])|2 + |(X - X,‘+1)|2

The LQA and HS methods require second derivatives. Although the GS2 equations do
not explicitly require the Hessian, second derivatives are used for the constrained
optimization step. For the same reasons we discussed in Section 10.3.5.4, the calculation
of second derivatives can greatly increase the cost of a reaction path following
calculation and limit the usefulness of these methods for the study of moderate and large
chemical systems. As before, Hessian updating can be employed, and previous studies
have shown that Hessian updating is a viable option for reaction path following using
these second-order integration schemes [177,211,232]. Also noteworthy is that Hessian
updating methods designed for minimization cannot be used with reaction path following
since the formulas for most of those updates become ill conditioned when the Hessian has
one or more negative eigenvalues [129]. Recall that the same concern was encountered in
our earlier discussion of TS optimization. Therefore, Hessian updating methods
developed for TS optimization are also useful in reaction path following (i.e. MS,
PSB, Bofill, etc.).

10.5.3 Higher order integrators

Higher order methods can also be envisioned. Here, we provide only a brief discussion of
two sets of higher order integrators, since they are not often used in connection with
electronic structure calculations. The first set of these methods, developed by Page
et al. [214], consists of two explicit third-order integrators. One of these integrators finds
each point on the reaction path by directly solving the first four terms of Eq. (54). The
PES third derivatives are required for v?, which can either be computed analytically or
numerically. A similar method provides a third-order analogue to LQA, the CLQA
algorithm. After each LQA step, the Hessians at the initial and final points can be used
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to estimate v? by finite difference by recognizing that v> depends on the derivative of the
force constants with respect to the arc length, s.

Gonzalez and Schlegel [209] have also developed a series of third- and fourth-order
methods. All of their higher order approaches use implicit integrators and are extensions
of the GS2 algorithm. One of these, a fourth-order method, uses the tangent and curvature
vectors at the initial and final points of each step.

1 1

1 1
X =X+ SVi As + EV?HAS + Ev}Asz - EviHAsZ (72)

10.5.4 Dynamic reaction path

The solution for the MEP, as shown above, is time independent. Of course, molecular
systems exist in a time dependent universe and they are constantly exercising motions on
the PES different than the specific motion described by the MEP. An alternative picture
for the reaction path is to allow the nuclei to move on the PES according to Newton’s
equations of motion. In terms of time, the coordinates of the system at time ¢;, X;, can be
given by the Taylor expansion

1
X, =X;-) +Vv,_Ar+ Eai,lAtz—F--‘ (73)

where v and a are velocity and acceleration, respectively. The velocity is given by a
similar Taylor series,

Vi=vi +a_Ar+--- (74)
and the acceleration is given by
F = ma
where m is a diagonal matrix of atomic masses and

av

==
where V is the potential energy of the system, which is given by the value of PES. For the
case where infinitesimal steps in t are taken and the kinetic energy is completely
removed, or damped, from the system at every step, the path mapped out by classical
dynamics (beginning at the TS) is identical to the IRC.

Starting at the TS and following a time-dependent path according to Newton’s
equation of motion yields the DRP of Stewart et al. [221]. Since a DRP without removing
any kinetic energy is the same as a classical trajectory calculation, it can be used to study
energy transfer processes during the course of a reaction, and understand how the energy
in specific modes behaves relative to the reaction coordinate, or IRC [220]. By damping
the kinetic energy at each step one can use the DRP as a means for finding qualitative
MEPs. This is especially useful where the purpose for finding the MEP is to ensure that a
located TS lies on 4 pathway connecting specific PES minima, and has been shown to be
an efficient alternative to conventional integration of the MEP (i.e. using methods

-8 (75)
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discussed in Sections 10.5.2 and 10.5.3). We have developed a method called damped
velocity Verlet (DVV) that controls the path accuracy by employing a variable step size,
At [219]. The DVYV step size control is based on the third-order error scaling of velocity
Verlet. Given the current step size of As; and desired error in the path, Ay, the next step

size, At;,, is set according to
1/3
A [V

A

1

Aty = At

(76)

In Eq. (76) A; is an estimated error in the path at step i. This estimated error is shown
schematically in Fig. 10.8, and is obtained by propagating a double sized step from x;_,
to x; and comparing this to the point x;.

10.5.5 Practical considerations

We conclude Section 10.5 by discussing a few practical points related to reaction path
following. This section begins with tips for choosing an appropriate reaction path
following algorithm based on the application at hand. Projected frequencies and the
relationship between path accuracy and errors in the path’s tangent, curvature, and
projected frequencies are considered in the second subsection. The third subsection is
concerned with bifurcations, which are novel topological features of PESs and reaction
paths. In the last subsection we suggest steps for difficult reaction path calculations.

10.5.5.1 Algorithm choice

We begin this section by briefly outlining some of the key points that need to be
considered when choosing an algorithm for a reaction path following calculation. As
mentioned earlier, reaction path following is typically employed to ensure that an
optimized TS lies on a MEP connecting the correct reactant and product minima and/or to
accurately determine reaction rates. These two applications of reaction path following
calculations have different requirements on the quality and efficiency of the integration.
In the former case, efficiency has primacy over strict accuracy, although it is essential that
the MEP integration be trustworthy and able to qualitatively follow the true pathway. In
the latter case, efficiency is desirable, but the accuracy of the path is paramount
(see Section 10.5.5.2).

Fig. 10.8. Graphical depiction of damped velocity Verlet (DVV) path error estimation used for time variation
(from Ref. [219] with permission).
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First, we consider the ability of the various integrators discussed above to provide
accurate pathways, such as those required for VTST and RPH calculations. DRP methods
are not appropriate for these applications of reaction path following since they provide
only an approximate path. A comparison of the accuracy of multiple integrators has been
provided in a series of papers by Truhlar and coworkers [207,208,233]. Schlegel and
colleagues have also provided comparisons of the accuracy afforded by a series of typical
first- and higher-order integrators [209,234]. Fig. 10.9 shows results of reaction path
following using a number of first- and second-order methods on the Miiller—Brown
surface. A step size of 0.2 has been used for all of the integrations shown. The solid line is
the MEP computed by Euler integration using a very small step size (0.0001). The portion
of the MEP considered in this example connects the TS at (—0.822, 0.624) and the
minimum at (—0.558, 1.442). Because the reaction path is curved, this surface can be
challenging for reaction path following integrators. It is clear from the figure that the first-
order methods deviate most from the true MEP while the second-order methods perform
very well. The accuracy of the first-order methods can be improved by decreasing the step
size, but this option is undesirable since it means an increased number of energy and
derivative evaluations. On the other hand, most second- and higher-order methods, such
as LQA, CLQA, and HS, all require second derivatives that are often more expensive
than multiple energy and gradient calculations, but this characteristic may not represent a
bottleneck if the MEP is being determined for subsequent rate constant calculations since
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Fig. 10.9. Reaction path following on the Miiller~Brown surface using Euler, Ishida, Morokuma, and
Komornicki (IMK), local quadratic approximation (LQA), Hratchian—Schlegel (HS), and second-order
Gonzalez—Schlegel (GS2) methods.
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VTST and RPH calculations also require Hessians along the MEP. Formally, the GS2
method does not require second derivatives. However, in practice the constrained
optimization at the end of each step uses Newton minimization and requires a Hessian
matrix. Although updated Hessians can be used with GS2, it has been shown[234] that
analytic Hessians are useful in providing very accurate pathways. One particularly
advantageous feature of GS2 over LQA and CLQA is that larger steps can be used to give
similar error in the path since GS2 is an implicit method. Additionally, the implicit nature
of GS2 makes it much more stable and robust along flat PESs and in regions of the MEP
where the gradient is small. This is especially important near the TS. Although this result
makes GS2 an attractive method for accurate path following, the integration can be
somewhat expensive due to the constrained optimizations, which typically require three
or four cycles per step. The HS method is also able to accurately follow the MEP in
difficult regions of the path, and only requires one evaluation of the energy and
derivatives per step.

If reaction path following is used to confirm a TS lies on a pathway connecting
appropriate reactant and product minima, the approaches used for kinetics studies are
more expensive than the nature of the application demands. For qualitative path
following, first-order methods are still not preferred since they require very small steps
and consequently progress down the MEP relatively slowly. To make second-order
methods more tractable for large systems Hessian updating can be employed [177,211,
232]. The use of updated Hessians only requires a slight decrease in the step size. As a
result, methods such as LQA, CLQA, GS2, and HS progress down the MEP faster than
the first-order approaches since they are able to take larger steps. To demonstrate the
applicability of Hessian updating to reaction path following integrators requiring force
constant matrices we have included Table 10.7, which shows the perpendicular distance
between points on a path computed with the HS integrator using all analytic Hessians and
using all updated Hessians. From this data, it is clear that Hessian updating can lead to
qualitatively good pathways. DRP approaches are efficient methods for elucidating
qualitative reaction pathways. Although these methods are able to take moderate step
sizes, methods such as LQA, GS2, and HS are able to take considerably larger steps. The
DVYV method, which uses a dynamic time step, requires more integration steps than GS2,

Table 10.7 RMS errors in position (A) for HS reaction path following Hessian updating®"

Reaction Step size (bohr) RMS error
HNC — HCN 0.10 3.05x 1074
0.40 1.05x10°°
CH;CH,F — CH,CH, + HF 0.10 473x 1077
0.40 846 x 1072
CICH; + CI~ — CI™ + CH5Cl 0.10 3.04x 1073
0.40 3.46 x 1072
Diels— Alder 0.10 1.58 x 1072
0.40 9.50x 1072

“For complete details see Ref. [211].
"Bofill’s updating scheme for transition state optimization has been employed.
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Table 10.8 Comparison of the number of Fock matrix evaluations for damped velocity Verlet and
second-order Gonzalez—Schlegel reaction path following*

Reaction Fock evaluations for DVV®  Fock evaluations for GS2°
CH; + HF—= CH; + F 1276 716
CH,0H — CH;0 1236 668
Diels—Alder reaction 2142 1352
CH;CH-F — CH,CH, + HF 1439 4281
Ene reaction 2134 7406
[Ir(CO),I5(CH3)]  — [Ir(CO)5(COCH3)] 1078 9579

“For complete details see Ref. [219].
"DVV calculations were run with a damping factor of 0.04 aw/fs.
GS2 calculations were run with a step size of 0.1 amu'’* bohr.

but becomes more efficient because it is an explicit method and does not require
constrained optimizations at each step. Table 10.8 shows the total number of Fock matrix
evaluations, which is the bottleneck for large systems, necessary to follow a series of
reaction paths using DVV and GS2 methods. The data clearly indicates that DVV is more
efficient than GS2.

10.5.5.2 Projected frequencies and coupling matrix elements

As mentioned earlier, MEPs can be used to compute reaction rates using VIST or RPH
methods. In order to use either of these approaches it is necessary to compute the
vibrational frequencies lying perpendicular to the MEP [234]. The perpendicular
vibrational frequencies are determined by projecting out motion along the tangent, V0,
from the Hessian and then calculating the projected frequencies according to the normal
procedures [235]. Mathematically, the projected Hessian, H, is given by

H = PHP )
where the projector, P, is
P=1—vH" (78)

If the calculation is carried out in mass-weighted Cartesian coordinates then overall
translation and rotation are also projected out of the Hessian.

Reaction rate calculations also require the coupling matrix terms B. The vector B
indicates the coupling between motion along the reaction path and the normal modes of
vibration corresponding to the projected frequencies, i.e. the normal modes that are
perpendicular to the MEP. The ith element of B is

B, = por 4 —v'"L; (79)
ds

where L; is the ith eigenvector of H. In order to compute reliable projected frequencies
and coupling matrix elements, it is necessary to integrate the MEP accurately. This is
especially important in the region very near the TS where the gradient is very small.
Precise MEPs are also required for accurate projected frequencies and coupling matrix
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elements in regions where the valley has steep walls since small displacements from the
MEP can cause large errors in the tangent and curvature vectors.

10.5.5.3 Bifurcation

Bifurcation is a novel topological feature that can be present on a PES [236}, which
occurs when one valley branches into two. More specifically, bifurcation can occur as a
valley progresses down the MEP from the TS and splits into two different minima, or as a
valley rises from a minimum and splits into two different MEPs heading toward two
different TSs. Along the reaction path of a simple valley, all of the projected frequencies
will be real. This corresponds to all of the eigenvalues of the projected Hessian being
positive. If one or more of the projected frequencies are imaginary, this indicates that the
PES is a maximum perpendicular to the reaction path and the path lies on a ridge. The
development of the ridge is marked by a valley-ridge inflection (VRI) point. At the VRI
point one projected frequency is zero. On one side of the VRI point this projected
frequency is real and on the other side it is imaginary. Fig. 10.1 shows a model PES that
has a VRI point on the MEP leading from Transition State B. At the VRI point the MEP
integration is displaced slightly (along the Hessian eigenvector with a corresponding
eigenvalue of zero) leading to the branching displayed in the figure. Bifurcation and
methods for locating VRI points are active arcas of research, and interested readers are
referred to the current literature for more detailed discussion [156,158,236-251].

10.5.5.4 Tips for difficult reaction path calculations

In this subsection we offer suggestions for difficult reaction path following calculations.
In conjunction with suggestions for correcting problems, we describe some useful
diagnostics. Testing these diagnostics is especially important for calculations that
terminate improperly (e.g. an SCF failure is encountered, etc.). Our principle focus here
is on calculations where reaction path following is employed to ensure that an optimized
TS lies on a pathway connecting the appropriate reactant and product minima. For
situations where the primary concern is a very accurate path for determining reaction
rates, these suggestions may also be useful.

The first test is to generate a plot of energy vs. reaction coordinate. This plot should be
smooth and show a monotonic decrease in energy as the reaction path progresses from the
TS to the reactant and product minima. A second diagnostic is to plot the r.m.s. force vs.
reaction coordinate. This plot should show zero force at the TS and an increasing r.m.s.
force for part of the progression to the minimum. Before reaching the minimum, the
r.m.s. force will reach a maximum and begin to decrease until it goes to zero when the
minimum is reached. Sharp spikes or sudden drops in either of these plots can indicate
problems with the level of theory being used to study the chemistry under investigation.
Mild undulations in either plot can indicate a problem with the actual integration of the
MEP. In many cases, this problem can be corrected by taking smaller steps. If a first-order
method is being used, an alternative solution is to switch to a second-order integrator.

For predictor—corrector and implicit integrators, the accuracy of the path can often be
enhanced by tightening convergence criteria. Of the methods discussed in this chapter,
this approach is applicable for MB, GS2, and HS. MB and GS2 both employ constrained
optimizations to determine the tangent at the endpoint of each step. In the practical
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implementation of the constrained optimization the accuracy of the endpoint is based on
convergence criteria, which can be tightened. In the case of HS, the Bulirsch-Stoer
corrcctor stcp repeats the intcgration of the MEP with dccrcasing step size until an
extrapolation to zero step size can be made with an estimated error in the energy below a
threshold. Decreasing this acceptance threshold can lead to a more accurate integration
by the HS algorithm.

DVV pathways can also display energy and force oscillations. This pathology can
usually be corrected by modifying the various parameters involved in the calculation.
Specifically, smaller »y and Ay values can lead to DVV paths more closely resembling the
actual MEP. In fact, Andersen and Carter [252,253] have used values for these
parameters that are much more stringent than those originally proposed. Note, though,
that small values for either parameter will require more points along the MEP to progress
to the minima, leading to more gradient evaluations and longer calculation times.

10.6 SUMMARY AND OUTLOOK

In this chapter, we have provided an overview of the current status of local minimization,
transition state optimization, and reaction path following using electronic structure
methods. This review also offered a number of suggestions for overcoming difficulties
commonly encountered in geometry optimization and reaction path following. Clearly,
great progress has been made in these areas in the past 40 years; however, the work is far
from complete. Indeed, the development of new methods for exploring ab initio PES
continues to be an active area of research in the computational quantum chemistry
community, especially within the context of hybrid methods (i.e. QM/MM and QM/QM)
and the study of very large systems.

In recent decades, electronic structure methods were used to study an ever-increasing
diversity of chemistries ranging in size from a few atoms to thousands of nuclei.
Doubtless, the future will bring faster computers and more efficient energy algorithms
that will expand the limits of computational chemistry beyond the fringes of today’s most
optimistic estimates. As we have shown here, tools for exploring PES are invaluable and
developments in this area will continue to respond to the demand for minimization
algorithms featuring fast convergence, robust transition state optimization techniques,
and reaction path following integrators coupling accuracy with efficiency.

10.7 REFERENCES

1 LL Steinfeld, J.S. Francisco and W.L. Hase, Chemical kinetics and dynamics, Prentice-Hall, Upper
Saddle River, NJ, 1999.

2 S.Glasstone, K.J. Laidler and H. Eyring, The theory of rate processes; the kinetics of chemical reactions,
viscosity, diffusion and electrochemical phenomena, McGraw-Hill, New York, 1941.

3 D.G. Truhlar and B.C. Garrett, Annu. Rev. Phys. Chem., 35 (1984) 159-189.

D.G. Truhlar, B.C. Garrett and S.J. Klippenstein, J. Phys. Chem., 100 (1996) 12771-12800.

5 B.C. Garrett and D.G. Truhlar, in Encyclopedia of computational chemistry, P.v.R. Schleyer, N.L.
Allinger, T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer III and P.R. Schreiner, (Eds.), Wiley,
Chichester, 1998, p. 3094-104.

+

References pp. 243249



244

10

11

12

13

14

15
16

18
19
20
21

22

23
24

25
26
27

28

29
30

31
32
33
34
35
36
37
38
39
40

Chapter 10

W_H. Miller, N.C. Handy and J.E. Adams, J. Chem. Phys., 72 (1980) 99-112.

E. Kraka, in Encyclopedia of computational chemistry, P.v.R. Schleyer, N.L. Allinger, T. Clark, J.
Gasteiger, P.A. Kollman, H.F. Schaefer IIT and P.R. Schreiner, (Eds.), Wiley, Chichester, 1998,
p. 2437-63.

P. Pulay, in: D.R. Yarkony (Ed.), Modern electronic structure theory, World Scientific, Singapore, 1995,
p- 1191

H.B. Schlegel, in Encyclopedia of computational chemistry, P.v.R. Schleyer, N.L. Allinger, T.
Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer HII and P.R. Schreiner, (Eds.), Wiley,
Chichester, 1998, pp. 1136-42.

H.B. Schlegel, in Encyclopedia of computational chemistry, P.v.R. Schleyer, N.L. Allinger, T. Clark,
J. Gasteiger, P.A. Kollman, HF. Schaefer II, and P.R. Schreiner, (Eds.), Wiley, Chichester, 1998,
pp. 2432-37.

G. Henkelman, G. J6hannesson and H. Jonsson, in: S.D. Schwartz (Ed.), Progress on theoretical
chemistry and physics, Kluwer, Dordrecht, 2000.

F. Jensen, in Encyclopedia of computational chemistry, P.v.R. Schleyer, N.L. Allinger, T. Clark, J.
Gasteiger, P.A. Kollman, HF. Schaefer III, and P.R. Schreiner, (Eds.), Wiley, Chichester, 1998,
pp- 3114-23.

C.A. Floudas and P.M. Pardalos, State of the art in global optimization: Computational methods and
applications, Kluwer, Dordrecht, 1996.

C.A. Floudas and P.M. Pardalos, Optimization in computational chemistry and molecular biology: Local
and global approaches, Kluwer, Dordrecht, 2000.

R. Horst and P.M. Pardalos, Handbook of global optimization, Kluwer, Dordrecht, 1995.

R. Horst, P.M. Pardalos and N.V. Thoai, Introduction to global optimization, Kluwer, Dordrecht, 2000.
A. Torn and A. Zhilinskas, Global optimization, Springer, Berlin, 1989.

M. Ben-Nun and T.J. Martinez, Adv. Chem. Phys., 121 (2002) 439-512.

G.A. Voth, J. Phys. Chem. A, 103 (1999) 9383.

R. Kosloff, Annu. Rev. Phys. Chem., 45 (1994) 145-178.

D. Heidrich, The reaction path in chemistry: Current approaches and perspectives, Kluwer, Dordrecht,
1995.

D. Heidrich, W. Kliesch and W. Quapp, Properties of chemically interesting potential energy surfaces,
Springer, Berlin, 1991.

M.A. Collins, Adv. Chem. Phys., 93 (1996) 389-453.

M.L. McKee and M. Page, in: K.B. Lipkowitz, D.B. Boyd (Eds.), Reviews in computational chemistry,
VCH, New York, NY, 1993, pp. 35-65.

D.J. Wales, Energy landscapes, Cambridge University Press, Cambridge, 2003.

J. Simons and J. Nichols, Int. J. Quantum Chem., Suppl. 24 (1990) 263-276.

C.E. Dykstra, Ab initio calculation of the structures and properties of molecules, Elsevier, Amsterdam,
1988.

P. Jgrgensen, J. Simons and North Atlantic Treaty Organization, Scientific Affairs Division, Geometrical
derivatives of energy surfaces and molecular properties, Reidel, Dordrecht, 1986.

F. Jensen, Introduction to computational chemistry, Wiley, Chichester, 1999.

X.S. Li, JM. Millam, G.E. Scuseria, M.J. Frisch and H.B. Schlegel, J. Chem. Phys., 119 (2003)
7651-7658.

K.N. Kudin, G.E. Scuseria and E. Cances, J. Chem. Phys., 116 (2002) 8255-8261.

S. Goedecker, Rev. Mod. Phys., 71 (1999) 1085--1123.

G.E. Scuseria, J. Phys. Chem. A, 103 (1999) 4782-4790.

JM. Millam and G.E. Scuseria, J. Chem. Phys., 106 (1997) 5569-5577.

W.Z. Liang and M. Head-Gordon, J. Chem. Phys., 120 (2004) 10379-10384.

Y. Shao, C. Saravanan, M. Head-Gordon and C.A. White, J. Chem. Phys., 118 (2003) 6144—-6151.
D.R. Bowler, T. Miyazaki and M.J. Gillan, J. Phys.-Condens. Matter, 14 (2002) 2781 —2798.

M.C. Strain, G.L. Scuseria and M.J. Frisch, Science, 271 (1996) 51-53.

P. Pulay, Mol. Phys., 17 (1969) 197-204.

K. Thompsen and P. Swanstron, Mol. Phys., 26 (1973) 735.



Finding minima, transition states, and following reaction pathways 245

41

42
43

44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66

67
68
69
70

71
72

73
74
75
76
77
78
79
80

81
82
83
84

I.A. Pople, R. Krishnan, H.B. Schlegel and J.S. Binkley, Int. J. Quantum Chem. Quantum Chem. Symp.,
13 (1979) 225-241.

1.D. Augspurger and C.E. Dykstra, J. Phys. Chem., 95 (1991) 9230-9238.

P.E. Maslen, D. Jayatilaka, S.M. Colwell, R.D. Amos and N.C. Handy, J. Chem. Phys., 95 (1991)
7409-7417.

S.M. Colwell, D. Jayatilaka, P.E. Maslen, R.D. Amos and N.C. Handy, Int. J. Quantum Chem., 40 (1991)
179-199.

J.F. Gaw, Y. Yamaguchi, H.F. Schaefer and N.C. Handy, J. Chem. Phys., 85 (1986) 5132—-5142.

JF. Gaw, Y. Yamaguchi and H.F. Schaefer, J. Chem. Phys., 81 (1984) 6395-6396.

P. Pulay, J. Chem. Phys., 78 (1983) 5043-5051.

P. Pulay, G. Fogarasi, F. Pang and J.E. Boggs, J. Am. Chem. Soc., 101 (1979) 2550.

P. Pulay and G. Fogarasi, J. Chem. Phys., 96 (1992) 2856-2860.

G. Fogarasi, X.F. Zhou, P.W. Taylor and P. Pulay, I. Am. Chem. Soc.. 114 (1992) 8191-8201.

J. Baker, J. Comput. Chem., 14 (1993) 1085-1100.

C.Y. Peng, P.Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comput. Chem., 17 (1996) 49-56.

J. Baker, A. Kessi and B. Delley, J. Chem. Phys., 105 (1996) 192-212.

M. von Arnim and R. Ahlrichs, J. Chem. Phys., 111 (1999) 9183-9190.

K.N. Kudin, G.E. Scuseria and H.B. Schlegel, J. Chem. Phys., 114 (2001) 2919-2923.

K. Nemeth, O. Coulaud, G. Monard and J.G. Angyan, J. Chem. Phys., 113 (2000) 5598-5603.

O. Farkas and H.B. Schlegel, J. Chem. Phys., 109 (1998) 7100-7104.

O. Farkas and H.B. Schlegel, J. Chem. Phys., 111 (1999) 10806—10814.

B. Paizs, G. Fogarasi and P. Pulay, J. Chem. Phys., 109 (1998) 6571-6576.

B. Paizs, J. Baker, S. Suhai and P. Pulay, J. Chem. Phys., 113 (2000) 6566-6572.

K. Nemeth, O. Coulaud, G. Monard and J.G. Angyan, J. Chem. Phys., 114 (2001) 9747-9753.

S.R. Billeter, A.J. Turner and W. Thiel, Phys. Chem. Chem. Phys., 2 (2000) 2177-2186.

J. Baker, D. Kinghorn and P. Pulay, J. Chem. Phys., 110 (1999) 4986-4991.

X. Prat-Resina, M. Garcia-Viloca, G. Monard, A. Gonzalez-Lafont, JM. Lluch, JM. Bofill and
J.M. Anglada, Theor. Chem. Acc., 107 (2002) 147-153.

T. Schlick and M. Overton, J. Comput. Chem., 8 (1987) 1025-1039.

T. Schlick, B.E. Hingerty, C.S. Peskin, M.L. Overton and S. Broyde, in: D.L. Beveridge, R. Lavery
(Eds.), Theoretical biochemistry and molecular biophysics, Adenine Press, Schenectady, NY, 1991,
pp. 39-58.

P. Derreumaux, G.H. Zhang, T. Schlick and B. Brooks, J. Comput. Chem., 15 (1994) 532-552.

R. Fletcher, Practical methods of optimization, Wiley, Chichester, 1987.

P.E. Gill, W. Murray and M.H. Wright, Practical optimization, Academic Press, New York, 1981.
JE. Dennis and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear
equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

L.E. Scales, Introduction to non-linear optimization, Springer, New York, 1985.

H.B. Schiegel, in: D.R. Yarkony (Ed.), Modern electronic structure theory, World Scientific, Singapore,
1995, pp. 459-500.

D.F. Shanno, Math. Comput., 24 (1970) 647.

D. Goldfarb, Math. Comput., 24 (1970) 23.

R. Fletcher, Comput. J., 13 (1970) 317.

C.G. Broyden, J. Inst. Math. Appl., 6 (1970) 76.

M.J. Powell, Math. Program., 15 (1971) 1.

B.A. Murtagh and R.-W.H. Sargent, Comput. J., 13 (1972) 185.

JM. Bofill, J. Comput. Chem., 15 (1994) 1-11.

H.B. Schlegel, in: J. Bertrén, I.G. Csizmadia (Eds.), New theoretical concepts for understanding organic
reactions, Kluwer, Dordrecht, 1989, pp. 33-53.

E. Besalu and .M. Bofill, Theor. Chem. Acc., 100 (1998) 265-274.

J.M. Anglada and J. M. Bofill, Int. J. Quantum Chem., 62 (1997) 153-165.

P. Culot, G. Dive, V.H. Nguyen and J.M. Ghuysen, Theor. Chim. Acta, 82 (1992) 189-205.

A. Banerjee, N. Adams, J. Simons and R. Shepard, J. Phys. Chem., 89 (1985) 52-57.

References pp. 243249



246

85
86
87
88
89
90
91
92
93
94

95
96
97

98

99

100

101

102

103
104
105
106
107
108

109
110

111
112

113
114
115
116
117
118
119
120
121
122

Chapter 10

T. Helgaker, Chem. Phys. Lett., 182 (1991) 503-510.

H.B. Schlegel, J. Comput. Chem., 3 (1982) 214-218.

J. Nocedal, Math. Comput., 35 (1980) 773-782.

D.C. Liu and J. Nocedal, Math. Program., 45 (1989) 503—528.

I M. Anglada, E. Besalu, J.M. Bofill and J. Rubio, J. Math. Chem., 25 (1999) 85-92.

T.H. Fischer and J. Almlof, J. Phys. Chem., 96 (1992) 9768-9774.

P. Pulay, J. Comput. Chem., 3 (1982) 556—560.

P. Pulay, Chem. Phys. Lett., 73 (1980) 393-398.

P. Csaszar and P. Pulay, J. Mol. Struct., 114 (1984) 31-34.

O. Farkas, PhD (Csc) thesis, Eétvis Lorand University and Hungarian Academy of Sciences, Budapest,
1995.

O. Farkas and H.B. Schlegel, Phys. Chem. Chem. Phys., 4 (2002) 11-15.

O. Farkas and H.B. Schlegel, J. Mol. Struct. (THEOCHEM), 666 (2003) 31-39.

J. Gao, in Encyclopedia of computational chemistry, P.v.R. Schleyer, N.L. Allinger, T. Clark, J.
Gasteiger, P.A. Kollman, H.F. Schaefer III, and P.R. Schreiner, (Eds.), Wiley, Chichester, 1998,
pp- 1257-1263.

J. Gao, in: K.B. Lipkowitz, D.B. Boyd (Eds.), Reviews in computational chemistry, VCH, New York,
1996, pp. 119-185.

R.D.J. Froese and K. Morokuma, in Encyclopedia of computational chemistry, P.v.R. Schleyer,
N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer III, and P.R. Schreiner, (Eds.), Wiley,
Chichester, 1998, pp. 1244-57.

KM. Merz and R.V. Stanton, in Encyclopedia of computational chemistry, P.v.R. Schleyer,
N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer Il and P.R. Schreiner, (Eds.),
Wiley, Chichester, 1998, pp. 2330-2343.

J. Tomasi and C.S. Pomelli, in Encyclopedia of computational chemistry, P.v.R. Schleyer, N.L. Allinger,
T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer III and P.R. Schreiner, (Eds.), Wiley, Chichester,
1998, pp. 2343-2350.

MF. Ruiz-Lépez and J.L. Rivail, in Encyclopedia of computational chemistry, P.v.R. Schleyer,
N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer III and P.R. Schreiner, (Eds.), Wiley,
Chichester, 1998, pp. 437-48.

G. Monard and K.M. Merz, Acc. Chem. Res., 32 (1999) 904-911.

T.Z. Mordasini and W. Thiel, Chimia, 52 (1998) 288—291.

M.J. Field, P.A. Bash and M. Karplus, J. Comput. Chem., 11 (1990) 700-733.

U.C. Singh and P.A. Kollman, J. Comput. Chem., 7 (1986) 718—730.

A. Warshel and M. Levitt, J. Mol. Biol., 103 (1976) 227—249.

M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber and K. Morokuma, J. Phys. Chem., 100
(1996) 19357-19363.

T. Vreven, B. Mennucci, C.O. da Silva, K. Morokuma and J. Tomasi, J. Chem. Phys., 115 (2001) 62-72.
S. Dapprich, I. Komaromi, K.S. Byun, K. Morokuma and M.J. Frisch, J. Mol. Struct. (THEOCHEM),
462 (1999) 1-21.

A.J. Turner, V. Moliner and L.H. Williams, Phys. Chem. Chem. Phys., 1 (1999) 1323-1331.

T. Vreven, K. Morokuma, O. Farkas, H.B. Schlegel and M.J. Frisch, J. Comp. Chem., 24 (2003)
760-769.

M. Sierka and J. Sauer, J. Chem. Phys., 112 (2000) 6983 —6996.

Y K. Zhang, H.Y. Liu and W.T. Yang, J. Chem. Phys., 112 (2000) 3483—3492.

D.R. Yarkony, Rev. Mod. Phys., 68 (1996) 985—1013.

D.R. Yarkony, Acc. Chem. Res., 31 (1998) 511-518.

D.R. Yarkony, J. Phys. Chem. A, 105 (2001) 6277-6293.

D.R. Yarkony, J. Chem. Phys., 92 (1990) 2457 -2463.

D.R. Yarkony, J. Phys. Chem., 97 (1993) 4407-4412.

D.R. Yarkony, J. Phys. Chem. A, 108 (2004) 3200—-3205.

M.R. Manaa and D.R. Yarkony, J. Chem. Phys., 99 (1993) 5251-5256.

J.M. Anglada and J.M. Bofill, J. Comput. Chem., 18 (1997) 992-1003.



Finding minima, transition states, and following reaction pathways 247

123
124

125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

M.J. Bearpark, M.A. Robb and H.B. Schlegel, Chem. Phys. Lett., 223 (1994) 269-274.

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, JAM. Jr.,
T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, JW. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador,
J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, Q. Farkas, D.K. Malick,
A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford,
J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox,
T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson,
W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, GAUSSIAN 03. Gaussian, Inc., Pittsburgh, PA, 2003.
H.B. Schlegel. Int. J. Quantum Chem. Quantum Chem. Symp., 24 (1992) 243-252.

When using programs written in FORTRAN these values are generally reported as infinity, ‘inf’, or not a
number, ‘nan’, in the output.

H.B. Schlegel, Theor. Chim. Acta, 66 (1984) 333-340.

H.B. Schilegel, J. Comput. Chem., 24 (2003) 1514-1527.

J.M. Anglada and J.M. Bofill, J. Comput. Chem., 19 (1998) 349-362.

JM. Bofill, Chem. Phys. Lett., 260 (1996) 359—-364.

J M. Bofill and M. Comajuan, J. Comput. Chem., 16 (1995) 1326—-1338.

J. Simons, P. Jorgensen, H. Taylor and J. Ozment, J. Phys. Chem., 87 (1983) 2745-2753.

JM. Bofill and J.M. Anglada, Theor. Chem. Acc., 105 (2001) 463-472.

J. Baker, J. Comput. Chem., 7 (1986) 385-395.

C.J. Cerjan and W .H. Miller, J. Chem. Phys., 75 (1981) 2800-2806.

J. Nichols, H. Taylor, P. Schmidt and J. Simons, J. Chem. Phys., 92 (1990) 340-346.

J. Pancir, Collect. Czech. Chem. Commun., 40 (1975) 1112-1118.

C.Y. Peng and H.B. Schlegel, Isr. J. Chem., 33 (1993) 449-454.

T. Halgren and W.N. Lipscomb, Chem. Phys. Lett., 49 (1977) 225-232.

F. Jensen, J. Chem. Phys., 119 (2003) 8804—8808.

F. Jensen and P.O. Norrby, Theor. Chem. Acc., 109 (2003) 1-7.

F. Jensen, J. Comput. Chem., 15 (1994) 1199-1216.

K. Mueller and L.D. Brown, Theor. Chim. Acta, 53 (1979) 75-93.

M.1.S. Dewar, E.F. Healy and J.J.P. Stewart, J. Chem. Soc. Faraday Trans. II, 80 (1984) 227-233.

C. Cardenas-Lailhacar and M.C. Zerner, Int. J. Quantum Chem., 55 (1995) 429-439.

LV. Ionova and E.A. Carter, J. Chem. Phys., 98 (1993) 6377-6386.

1.V. Ionova and E.A. Carter, J. Chem. Phys., 103 (1995) 5437-5441.

S. Bell and J.S. Crighton, J. Chem. Phys., 80 (1984) 2464-2475.

A. Jensen, Theor. Chim. Acta, 63 (1983) 269-290.

J.M. Anglada, E. Besalu, J.M. Bofill and R. Crehuet, J. Comput. Chem., 20 (1999) 1112—1129.

F. Bernardi, J.J.W. McDouall and M.A. Robb, J. Comput. Chem., 8 (1987) 296-306.

J.J.W. McDouall, M.A. Robb and F. Bernardi, Chem. Phys. Lett., 129 (1986) 595-602.

LH. Williams and G.M. Maggiora, 1. Mol. Struct. (THEOCHEM), 6 (1982) 365-378.

M.J. Rothman and L.L. Lohr, Chem. Phys. Lett., 70 (1980) 405-409.

P. Scharfenberg, Chem. Phys. Lett., 79 (1981) 115-117.

W. Quapp, Chem. Phys. Lett., 253 (1996) 286-292.

W. Quapp, M. Hirsch and D. Heidrich, Theor. Chem. Acc., 105 (2000) 145-155.

W. Quapp, M. Hirsch, O. Imig and D. Heidrich, J. Comput. Chem., 19 (1998) 1087-1100.

W. Quapp, Comput. Math. Appl., 41 (2001) 407-414.

M. Hirsch and W. Quapp, J. Comput. Chem., 23 (2002) 887-894.

R. Crehuet, M. Bofill and J.M. Anglada, Theor. Chem. Acc., 107 (2002) 130-139.

K. Fukui, Acc. Chem. Res., 14 (1981) 363-368.

L.R. Pratt, J. Chem. Phys., 85 (1986) 5045—50438.

R. Elber and M. Karplus, Chem. Phys. Lett., 139 (1987) 375-380.

References pp. 243—249



248

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180

181
182
183
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198

199
200
201
202
203
204
205
206

207
208

209
210
211

Chapter 10

G. Henkelman and H. J6nsson, J. Chem. Phys., 113 (2000) 9978-9985.

P.Y. Ayala and H.B. Schlegel, J. Chem. Phys., 107 (1997) 375-384.

B. Peters, A. Heyden, A.T. Bell and A. Chakraborty, J. Chem. Phys., 120 (2004) 7877—-7886.

C. Choi and R. Elber, J. Chem. Phys., 94 (1991) 751-760.

R. Czerminski and R. Elber, Int. J. Quantum Chem., (1990) 167-186.

R. Czerminski and R. Elber, J. Chem. Phys., 92 (1990) 5580-5601.

A. Ulitsky and R. Elber, J. Chem. Phys., 92 (1990) 1510-1511.

0.S. Smart, Chem. Phys. Lett., 222 (1994) 503-512.

E.M. Sevick, A.T. Bell and D.N. Theodorou, J. Chem. Phys., 98 (1993) 3196-3212.

R.E. Gillilan and K.R. Wilson, J. Chem. Phys., 97 (1992) 1757-1772.

T.L. Beck, J.D. Doll and D.L. Freeman, J. Chem. Phys., 90 (1989) 3181-3191.

G. Henkelman, B.P. Uberuaga and H. Jonsson, J. Chem. Phys., 113 (2000) 9901-9904.

C. Gonzalez and H.B. Schlegel, J. Chem. Phys., 90 (1989) 2154-2161.

C. Gonzalez and H.B. Schlegel, J. Phys. Chem., 94 (1990) 5523—5527.

H. Jonsson, G. Mills and W. Jacobsen, in: B.J. Berne, G. Cicotti, D.F. Coker (Eds.), Classical and
quantum dynamics in condensed phase simulations, World Scientific, Singapore, 1998, p. 385.

P. Maragakis, S.A. Andreev, Y. Brumer, D.R. Reichman and E. Kaxiras, J. Chem. Phys., 117 (2002)
4651-4658.

D.J. Wales, Mol. Phys., 100 (2002) 3285-3305.

S.A. Trygubenko and D.J. Wales, J. Chem. Phys., 120 (2004) 2082~2094.

J.W. Chu, B.L. Trout and B.R. Brooks, J. Chem. Phys., 119 (2003) 12708-12717.

H.L. Woodcock, M. Hodoscek, P. Sherwood, Y.S. Lee, HF. Schaefer and B.R. Brooks, Theor. Chem.
Acc., 109 (2003) 140-148.

Y. Abashkin and N. Russo, J. Chem. Phys., 100 (1994) 4477-4483.

E. Weinan, W.Q. Ren and E. Vanden-Eijnden, Phys. Rev. B, 66 (2002).

B.C. Garrett and D.G. Truhlar, J. Phys. Chem., 83 (1979) 1079—-1112.

A.D. Isaacson and D.G. Truhlar, J. Phys., 76 (1982) 1380—1381.

L. Shavitt, J. Chem. Phys., 49 (1968) 4048—4056.

D.G. Truhlar and A. Kuppermann, J. Am. Chem. Soc., 93 (1971) 1840—-1851.

D.G. Truhlar and A. Kuppermann, J. Chem. Phys., 56 (1972) 2232-2252.

M.V. Basilevsky and A.G. Shamov, Chem. Phys., 60 (1981) 347-358.

D.K. Hoffman, R.S. Nord and K. Ruedenberg, Theor. Chim. Acta, 69 (1986) 265-279.

P. Jorgensen, H.J.A. Jensen and T. Helgaker, Theor. Chim. Acta, 73 (1988) 55—65.

H.B. Schlegel, Theor. Chim. Acta, 83 (1992) 15-20.

J.Q. Sun and K. Ruedenberg, J. Chem. Phys., 98 (1993) 9707-9714.

P.G. Bolhuis, C. Dellago and D. Chandler, Faraday Discuss., (1998) 421—-436.

P.G. Bolhuis, C. Dellago, P.L. Geissler and D. Chandler, J. Phys.-Condens. Matter, 12 (2000)
Al147-A152.

B.R. Brooks, Y.S. Lee and T.E. Cheatham, Abstr. Pap. Am. Chem. Soc., 222 (2001) 63-COMP.

G.E. Crooks and D. Chandler, Phys. Rev. E, 6402 (2001) 026109-026112.

C. Dellago, P.G. Bolhuis and D. Chandler, J. Chem. Phys., 110 (1999) 6617~6625.

C. Dellago, P.G. Bolhuis, F.S. Csajka and D. Chandler, J. Chem. Phys., 108 (1998) 1964—1977.

A. Michalak and T. Ziegler, J. Phys. Chem. A, 105 (2001) 4333-4343.

L. Rosso, P. Minary, Z.W. Zhu and M.E. Tuckerman, J. Chem. Phys., 116 (2002) 4389-4402.

L. Rosso and M.E. Tuckerman, Mol. Simul., 28 (2002) 91-112.

C.W. Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall,
Englewood Cliffs, NJ, 1971.

K.K. Baldridge, M.S. Gordon, R. Steckler and D.G. Truhlar, J. Phys. Chem., 93 (1989) 5107-5119.
B.C. Garrett, M.J. Redmon, R. Steckler, D.G. Truhlar, K.K. Baldridge, D. Bartol, M.W. Schidt and
M.S. Gordon, J. Phys. Chem., 92 (1988) 1476—1488.

C. Gonzalez and H.B. Schlegel, J. Chem. Phys., 95 (1991) 5853 5860.

H.P. Hratchian and H.B. Schlegel, J. Chem. Phys., 120 (2004) 9918—9924.

H.P. Hratchian and H.B. Schlegel, J. Chem. Theory Comp. 1 (2004) 61—69.



Finding minima, transition states, and following reaction pathways 249

212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227

228
229
230
231
232
233
234
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

K. Ishida, K. Morokuma and A. Komornicki, J. Chem. Phys., 66 (1977) 2153-2156.

K. Miiller and L.D. Brown, Theor. Chim. Acta, 53 (1979) 75-93.

M. Page, C. Doubleday and J.W. Mclver, J. Chem. Phys., 93 (1990) 5634-5642.

M. Page and J.M. Mclver, J. Chem. Phys., 83 (1988) 922-935.

M.W. Schmidt, M.S. Gordon and M. Dupuis, J. Am. Chem. Soc., 107 (1985) 2585-2589.

J.Q. Sun and K. Ruedenberg, J. Chem. Phys., 99 (1993) 5269-5275.

M.S. Gordon, G. Chaban and T. Taketsugu, J. Phys. Chem., 100 (1996) 11512—-11525.

H.P. Hratchian and H.B. Schlegel, J. Phys. Chem. A, 106 (2002) 165-169.

S.A. Maluendes and M.J. Dupuis, J. Chem. Phys., 93 (1990) 5902-5911.

J.J.P. Stewart, L.P. Davis and L.W. Burggraf, J. Comput. Chem., 8 (1987) 1117-1123.

V. Bakken, J.M. Millam and H.B. Schlegel, J. Chem. Phys., 111 (1999) 8773-8777.

JM. Millam, V. Bakken, W. Chen, W.L. Hase and H.B. Schlegel, J. Chem. Phys., 111 (1999)
3800--3805.

R. Bulirsch and J. Stoer, Num. Math., 6 (1964) 413-427.

R. Bulirsch and J. Stoer, Num. Math., 8 (1966) 1-13.

R. Bulirsch and J. Stoer, Num. Math., 8 (1966) 93—104.

W_H. Press, Numerical recipes in FORTRAN 77: The art of scientific computing, Cambridge University
Press, Cambridge, 1996.

R.P.A. Bettens and M.A. Collins, J. Chem. Phys., 111 (1999) 816-826.

M.A. Collins, Theor. Chem. Acc., 108 (2002) 313-324.

J. Ischtwan and M.A. Collins, J. Chem. Phys., 100 (1994) 8080—8088.

K.C. Thompson, M.L.T. Jordan and M.A. Collins, J. Chem. Phys., 108 (1998) 564-578.

F. Eckert and H.J. Werner, Theor. Chem. Acc.. 100 (1998) 21-30.

V.S. Melissas, D.G. Truhlar and B.C. Garrett, J. Chem. Phys., 96 (1992) 5758-5772.

A.G. Baboul and H.B. Schlegel, J. Chem. Phys., 107 (1997) 9413-9417.

E.B. Wilson, J.C. Decius and P.C. Cross, The theory of infrared and Raman vibrational spectra,
McGraw-Hill, New York, 1955.

P. Valtazanos and K. Ruedenberg, Theor. Chim. Acta, 69 (1986) 281-307.

J. Baker and P.M.W. Gill, J. Comput. Chem., 9 (1988) 465-475.

V. Bakken, D. Danovich, S. Shaik and H.B. Schilegel, J. Am. Chem. Soc., 123 (2001) 130-134.
M.V. Basilevsky, Theor. Chim. Acta, 72 (1987) 63—67.

Y. Kumeda and T. Taketsugu, J. Chem. Phys., 113 (2000) 477-484.

B. Lasomnc, G. Dive, D. Lauvergnat and M. Desouter-Lecomte, J. Chem. Phys., 118 (2003) 58315840
B. Peters, W.Z. Liang, A.T. Bell and A. Chakraborty, J. Chem. Phys., 118 (2003) 9533-9541.
W. Quapp, J. Theor. Comput. Chem., 2 (2003) 385-417.

W. Quapp, J. Comput. Chem., 25 (2004) 1277-1285.

W. Quapp, J. Mol. Struct., 695 (2004) 95-101.

W. Quapp, M. Hirsch and D. Heidrich, Theor. Chem. Acc., 100 (1998) 285-299.

M.N. Ramquet, G. Dive and D. Dehareng, J. Chem. Phys., 112 (2000) 4923-4934.

T. Taketsugu and T. Hirano, J. Mol. Struct. (THEOCHEM), 116 (1994) 169-176.

T. Taketsugu and Y. Kumeda, J. Chem. Phys., 114 (2001) 6973—-6982.

T. Taketsugu, N. Tajima and K. Hirao, J. Chem. Phys., 105 (1996) 1933-1939.

T. Yanai, T. Taketsugu and K. Hirao, J. Chem. Phys., 107 (1997) 1137-1146.

A. Andersen and E.A. Carter, J. Phys. Chem. A, 107 (2003) 9463-9478.

A. Andersen and E.A. Carter, Isr. J. Chem., 42 (2002) 245-260.

References pp. 243—-249



