1) Run Ising model simulations for $\mathrm{T}=[1.75,2.00,2.25,2.50,2.75]$ for 4 x 4 and an 8 x 8 grid of spins. Plot $<E>$ vs T, C_{v} vs T, and $<|M|>$ vs T for each grid and discuss the critical point and critical exponent.

The plots for the Ising model are shown below. Extra points were included for $\mathrm{T}=[2.10,2.20,2.30,2.40]$ to show the differences from the number of spins and plots for a 20×20 grid are included as well. The simulations had 100,000 equilibration steps and $1,000,000$ steps for the statistics (values recorded every 1000 steps for 1000 data points).

The critical temperature for the 4 x 4 and 8 x 8 grids is between 2.25 and 2.50 , but the exact value is hard to estimate even when the extra points are included in the plots. The critical exponent calculated by fitting

$$
\ln (<|M|>)=\alpha \ln (2.269-T)+C
$$

was 0.100 for the 4 x 4 grid and 0.0636 for the 8 x 8 grid. These values do not compare well to $\alpha=0.125$, but the systems are small.

For the 20×20 grid that was included for completeness, the C_{v} shows a sharp peak around $\mathrm{T}=2.25$, and the critical temperature is more clearly shown. The critical exponent calculated using this simulation was 0.111 which is in much better agreement with the correct value.

Figure 1: Results for the 4×4 grid of spins.

Figure 2: Results for the 8×8 grid of spins.

Figure 3: Results for the 20×20 grid of spins.
2) Find the second Virial coefficient and the Boyle Temperature for the Berthelot equation of state. (McQuarrie 12-4)

The Virial equation represents pressure as a power series in terms of ρ

$$
P=k T \rho+B_{2} \rho^{2}+B_{3} \rho^{3} \cdots
$$

The Berthelot EOS is

$$
\begin{gathered}
\left(P+\frac{N^{2} A}{V^{2} T}\right)(V-N B)=N k T \\
P(V-N B)+\frac{N^{2} A}{V T}-\frac{N^{3} A B}{V^{2} T}=N k T \\
P(1-\rho B)+\frac{A}{T} \rho^{2}-\frac{A B}{T} \rho^{3}=k T \rho \\
P=\frac{1}{1-\rho B}\left(k T \rho-\frac{A}{T} \rho^{2}+\frac{A B}{T} \rho^{3}\right)
\end{gathered}
$$

let

$$
x=\rho B
$$

and use

$$
\frac{1}{1-x}=1+x+x^{2} \cdots
$$

The EOS then becomes (truncating at the second term)

$$
\begin{gathered}
P=k T \rho+k T x \rho-\frac{A}{T} \rho^{2}-\frac{A x}{T} \rho^{2}+\frac{A B}{T} \rho^{3}+\frac{A B x}{T} \rho^{3} \\
P=k T \rho+k T B \rho^{2}-\frac{A}{T} \rho^{2}-\frac{A B}{T} \rho^{3}+\frac{A B}{T} \rho^{3}+\frac{A B^{2}}{T} \rho^{4} \\
B_{2}=k T B-\frac{A}{T} \\
B_{3}=\frac{A B}{T}+\frac{A B}{T}=\frac{2 A B}{T}
\end{gathered}
$$

The Boyle temperature is the temperature where $B_{2}=0$

$$
\begin{aligned}
& k T_{b} B=\frac{A}{T_{b}} \\
& T_{b}^{2}=\frac{A}{k B} \\
& T_{b}=\sqrt{\frac{A}{k B}}
\end{aligned}
$$

