Chem 2440 - HW \#3.
Assigned Jan. 31, due Feb. 9.

1. Chandler, 3.18
2. Chandler, 3.19
3. Chandler, 3.23
4. Consider a single lattice model of a 4-unit polymer. In this model the polymer units (beads) are located on a square 2 -dimensional lattice (i.e., the angles are $0,90,180 \mathrm{deg}$.) Suppose there is a stabilization energy of $-\varepsilon$ when two non-bonded beads are nonadjacent sites. Assume all other interactions of 0 . For simplicity redefine the zero of energy to correspond to the most stable arrangement.
(i) How many microstates are there and what are there energies?
(ii) Plot the population of the most stable configuration as a function of T? (Hint, calculate the population for $\mathrm{kT}=0,0.5 \varepsilon \varepsilon 2 \varepsilon 3 \varepsilon$.
(iii) Plot E and S vs. kT.
