HW \#2.
(1) The voider Walls equation is given by

$$
\frac{p}{R T}=\frac{\rho}{1-b \rho}-\frac{a \rho^{z}}{R T}
$$

Show that there is a region in the T - ρ plane. where otis equation, videates stability.. Determine the bounden of the region,

$$
\begin{aligned}
\left(\frac{\partial P}{\partial V}\right)_{T, n} & =-\frac{V^{2}}{n}\left[\frac{R T}{(1-b \rho)^{2}}-2 a \rho\right] \\
-\left(\frac{\partial P}{\partial V}\right)_{T, n} & =\frac{V^{2}}{n}\left[\frac{R T}{(i-b \rho)^{2}}-2 a \rho\right]
\end{aligned}
$$

this is unstable if $\frac{R T}{(1-b \rho)^{2}}-2 a \rho<0$
The boundary of the instable region is given by

picture showing two isotherms and maxwell construction

Homework \# 2.
Comment on last problem.
There is a typo where the two energies are added. The correct energy is 3375 R. This, in turn causes a small error in T , which should be 321 K .
(2) Suppose two systems have the following equations of state.

$$
\frac{1}{T^{(1)}}=\frac{3}{2} R \frac{N^{(1)}}{E^{(1)}} \quad \frac{1}{T^{(2)}}=\frac{5}{2} \frac{R N^{(2)}}{E^{(2)}}
$$

and $N^{(1)}=2$ and $N^{(2)}=3$. Suppose further that the two systems ore brought into contact oud heat con flow between them and the total energy is $2,5 \times 10^{3} \mathrm{~J}$. What is the internal energy of each system once equilibrium is achieved?

$$
\begin{aligned}
& E^{(1)}+E^{(2)}=2.5 \times 10^{3} \mathrm{~J} \\
& \frac{3}{2} R \frac{(2)}{E_{4}^{(1)}}=\frac{\frac{5}{2} R(3)}{E_{k}^{(2)}} \rightarrow 3 E_{2}^{(2)}=\frac{15}{2} E^{(1)} \rightarrow E^{(2)}=\frac{5}{2} E^{(1)} \\
& \frac{7}{2} E^{(1)}=2.5 \times 10^{3} \mathrm{~J} \Rightarrow \quad E^{(1)}=714 \mathrm{~J} \\
& \\
& E^{(2)}=1786 \mathrm{~J}
\end{aligned}
$$

(3) Consider the same two sypters as in problem (2) but suppose system 1 starts at $T^{(1)}=250 \mathrm{~N}$ and system 2 otarts at $T^{(2)}=350 \mathrm{~K}$. What is the temperature after equilibration?

$$
\begin{aligned}
& E^{(1)}=\frac{3}{2} 2 R(250)=750 R \\
& E^{(2)}=\frac{5}{2} 3 R(350)=2625 R \\
& E^{(1)}+L^{(2)}=3405 R \\
& \frac{3}{2} 2 R T+\frac{5}{2} 3 R T=3405 R \text { at equilibrium. } \\
& T=304 \mathrm{~K} .
\end{aligned}
$$

