Going from single particle to many-particle distribution functions

Assume non-interacting particles

Distinguishable particles Q(N,V,T)=q"

N
Indistinguishable particles Q(N,V,T)=% <_| |Boltzmann
' | statistics, holds
approximately

Consider two distinguishable particles
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Now suppose the particles are indistinguishable
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If fermions — two particles cannot be in the same level
If bosons, €+ € €+ € should not be counted separately



One can approximately fix this problem by + by N/

Q= q P many-body problem reduced to
N! a one-body problem

Boltzmann statistics
eassumes # states >> # particles
eignores symmetry of wave function

valid at high T
(classical limit)
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Fermi-Dirac and Bose-Einstein Statistics

fermions — no two can be in the same state
bosons —two or more can be in the same state

n,(E;)= # molecules in kth molecular level
with total energy E;

E, =Y &n. N=>n .l Z n = N
QNV,T)=Ye” Ze_ﬂw ‘

Different spin combinations are
treated as different states

It is very difficult to simplify this.
The problem is simpler in the grand canonical ensemble
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fermi-dirac
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Bose-Einstein

n . =0,12,..0
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With FD or BE statistics g is no longer the key quantity.



Fermi-dirac
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Expect classical limit as A—>0

n—->0 = 10

small A: n_=1e "™
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at finite T the populations are smeared out

As N/V — OorT >

In these limits # quantum
states >> # of particles

Sum both sides over

k and solve for A



for small A we also have

pV =kTAD> e =kT Aq
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_ Shown previously for
ppV =In= the GCE
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McQuarrie — Chapter 5: Ideal Gas of Atoms

electronic partition function — open shall systems
have to be treated carefully

O(1s?2s?2p*) R,(2J+1=5) 0
P (23 +1=3) 158cm™
°p, (23 +1=1) 226cm*

keep in mind kT (room temp) ~200 cm™

Also there is the possibility of excited nuclear levels (such states are separated
by millions of eV —so can ignore.

There is a nuclear degeneracy term. Doesn’t change in chemical reactions — so
does not impact AE or AS.



N N
Q= (qel)—qtr Partition function for ideal
gas of atoms
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