A closer look at distributions – examples drawn from Dill

Boltzmann

$$S = k \ell n W$$

Coin tosses

which sequence is more probable?

which is more probable 4H or 3H, 1T (independent of sequence)?
The latter 1/16 vs. 1/4

coin flips
$$\frac{N!}{n!(N-n)!}$$

binomial distribution → Gaussian for large N

for large N, $n^* \rightarrow max \ prob = N/2$ (50% heads, 50% tails)

consistent with what we know of diffusion of particles

chemical potential is the force for mixing (again, no interactions are needed)

We have also seen that the # of arrangements grows with > E

Why does heat flow?

Bring A and B into thermal contact.

If no exchange of energy $w_A w_b = 45x210 = 9450$ arrangements

suppose energy is exchanged so
$$E_A = E_B$$

$$w_{A+B} = \left(\frac{10!}{7!3!}\right)^2 = 14400 \quad \longleftarrow \text{ more arrangements}$$

$$\Rightarrow \text{ energy will flow}$$

$$\frac{20!}{14!6!} = 38760$$
All arrangements with fixed $E_A + E_B$

heat flows to achieve max # of arrangements not to equalize the energy (although it accomplishes that in above example).

In general, $E_A \neq E_B$ after equilibration

Consider

A 10 particles
$$E_A = 2$$

B 4 particles
$$E_B = 2$$

$$W_A W_B = \frac{10!}{8!2!} \frac{4!}{2!2!} = 270$$

Now suppose B transfers energy to A s.t. $E_A = 3$, $E_B = 1$

$$W_A W_B = \frac{10!}{7!3!} \frac{4!}{3!1!} = \frac{10 \cdot 9 \cdot 8}{6} \cdot 4 = 480$$

temperature is the driving force for energy flow

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n}$$

$$\ell n \ n! \approx \frac{1}{2} \ell n 2\pi n + \left(n + \frac{1}{2}\right) \ell n \ n - n$$

$$\ell n \ n! \approx n \ell n \ n - n \quad \text{for } n >> 10$$

$$n! \approx \left(\frac{n}{e}\right)^{n}$$

Stirling's Approx.

1D random walk ("drunken walker")

Each step has unit length in either +x or -x

total of N steps

m in +x and (N-m) in -x direction

$$P(m,N) = \left(\frac{1}{2}\right)^{N} \frac{N!}{m!(N-m)!},$$

$$-P(m,N) = \left(\frac{1}{2}\right)^{N} \frac{N!}{m!(N-m)!}, \qquad \text{Define: } m^* \text{ is most probable endpoint}$$

$$\ell n P(m) = \ell n P(m^*) + \left(\frac{d \ell n P}{dm}\right)_{m^*} (m-m^*) + \frac{1}{2} \left(\frac{d^2 \ell n P}{dm^2}\right)_{m^*} (m-m^*)^2 + \dots \qquad \text{Taylor series}$$

Taylor series about m*

$$-\frac{d\ell nP}{dm}\Big|_{m^*} = -1 - \ell n(m^*) + \ell n(N - m^*) + 1$$

$$\Rightarrow m^* = N/2$$
max of P
when $m = m^*$
so 1st deriv
vanishes

$$\left. \frac{d^2 \ell n P}{dm^2} \right|_{m^*} = -\frac{4}{N}$$

$$P(x) = \frac{1}{\sqrt{2\pi N}} e^{-x^2/2N}$$
 In distance space

$$x = m - (N-m) = 2m - N$$

 $m^* = N/2; x^* = 0$

$$\langle x^2 \rangle = N$$

$$\sqrt{x^2} = \sqrt{N}$$
 Note: if walker was directed (one direction only) this would be N .