McQuarrie – Chapter 8 – Extensions to polyatomics

$$H = H_{trans} + H_{int}$$

int = internal = vibrations and rotations

$$\varepsilon = \varepsilon_{trans} + \varepsilon_{int}$$

$$q = q_{trans}q_{int}$$

$$q_{tr} = \left(\frac{2\pi mkT}{h^2}\right)^{3/2} V$$

$$Q = \frac{\left(q_{tr}q_{\text{int}}\right)^{N}}{N!}$$

Degrees of freedom

Molecule with *n* atoms

3 tr

3 rot (non linear)

2 rot (linear)

(3n - 6) vibr.

(3n-5) vibr.

assume rigid rotor, harmonic oscillator

$$q = \frac{\left(q_{tr}q_{rot}q_{vibr}q_{el}q_{nuc}\right)^{N}}{N!}$$

Allowing also for el. states and nuclear spin effects

$$q_{el} = \omega_{el} e^{D_e/kT} + \dots$$

take $q_{nuc} = 1$ for now

vibr problem – normal coordinates different vibrations decouple

 α = (3n-6) [(3n-5)] vibrations

$$\varepsilon = \sum_{j=1}^{\alpha} \left(n_j + \frac{1}{2} \right) h v_j , \quad n_j = 0, 1, 2, \dots$$

$$v_j = \frac{1}{2\pi} \sqrt{\frac{k_j}{\mu}}$$

$$q_{vib} = \Pi \frac{e^{-\theta_{v_j}/2T}}{\left(1 - e^{-\theta_{v_j}/T}\right)}$$

 E_{vib} , $C_{v,vib}$: sums over contributions from all normal modes

Rotation is a bit more involved:

Linear molecules
$$q_{rot} = \frac{8\pi^2 IkT}{\sigma h^2} = \frac{T}{\sigma \theta_r}$$

 $I = \sum_{j=1}^{n} m_j d_j^2$, where d_j is measured from the center of mass.

$$x_{cm} = \frac{1}{M} \sum_{j=1}^{n} m_j x_j \quad \text{etc.,} \quad M = \sum m_i$$

In general
$$I_{xx} = \sum m_j \left[\left(y_j - y_{cm} \right)^2 + \left(z_j - z_{cm} \right)^2 \right]$$

$$I_{yy} = \sum m_j \left[\left(x_j - x_{cm} \right)^2 + \left(z_j - z_{cm} \right)^2 \right]$$

$$I_{zz} = \sum m_j \left[\left(x_j - x_{cm} \right)^2 + \left(y_j - y_{cm} \right)^2 \right]$$

$$I_{xy} = \sum m_j \left(x_j - x_{cm} \right) \left(y_j - y_{cm} \right), \text{ etc.}$$

Principle axes: X, Y, Z diagonalize <u>I</u>

If a molecule has symmetry, easy to find X, Y, Z

$$\overline{A} = \frac{h}{8\pi I_{A}c}, \quad \overline{B} = \frac{h}{8\pi I_{B}c}, \quad \overline{C} = \frac{h}{8\pi I_{C}c} \quad (\text{in cm}^{-1})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

$$\theta_A = \theta_B = \theta_C$$
 spherical top

$$\theta_A = \theta_B \neq \theta_C$$
 symm top

$$\theta_A \neq \theta_B \neq \theta_C$$
 asymm top \leftarrow difficult

spherical tops
$$\varepsilon_j = \frac{J\left(J+1\right)}{2}\hbar^2, \qquad J=0,1,2,...$$

$$\omega_{\rm J}=(2{\rm J}+1)^2 \qquad \qquad {\rm degeneracy}$$
 factor

high T

$$q_{rot} = \frac{1}{\sigma} \int_0^\infty (2J+1)^2 e^{-J(J+1)\hbar^2/2IkT} dJ$$
 can ignore the "1"

$$=\frac{\sqrt{\pi}}{\sigma} \left(\frac{8\pi^2 IkT}{h^2} \right)^{3/2}$$

$$I_A = I_B \neq I_C$$
 also solvable in closed form

$$q_{rot} = \frac{\sqrt{\pi}}{\sigma} \left(\frac{8\pi^2 I_A kT}{h^2} \right) \left(\frac{8\pi^2 I_C kT}{h^2} \right)^{1/2}$$

Asymm. top

$$q_{rot} = \frac{\sqrt{\pi}}{\sigma} \left(\frac{8\pi^2 I_A kT}{h^2} \right)^{1/2} \left(\frac{8\pi^2 I_B kT}{h^2} \right)^{1/2} \left(\frac{8\pi^2 I_C kT}{h^2} \right)^{1/2}$$

$$q_{rot} = \frac{\sqrt{\pi}}{\sigma} \sqrt{\frac{T^3}{\theta_A \theta_B \theta_C}}$$

So in the "high" T limit

$$E_{rot} = \frac{3}{2}NkT$$
 for non-linear molecules

$$S_{rot} = Nk \ell n \left[\frac{\pi}{\sigma}^{1/2} \left(\frac{T^3 e^3}{\theta_A \theta_B \theta_C} \right)^{1/2} \right]$$

Although expressions for total E and S are rather involved, pV = NkT

Hindered rotation

e.g., ethane

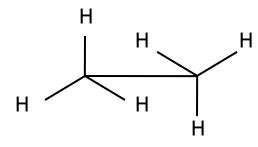
- Minima at torsion angles 0, 120, 240, 360°
- Maxima (v_0) at torsion angles = 60, 180, 300°

In general, have to solve the Schrödinger equation for the energy levels of the rigid rotor degree of freedom and use these in evaluating the partition function.

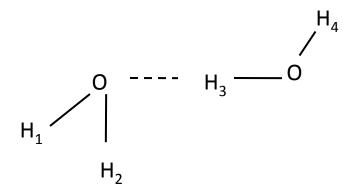
Symmetry numbers for various point groups

$C_1, C_{\infty v}, C_s, C_i$	1	
$C_2, C_{2v}, C_{2h}, D_{\infty h}$	2	
C_3, C_{3v}, C_{3h}, S_6	3	
$C_{\scriptscriptstyle 4}, C_{\scriptscriptstyle 4 \scriptscriptstyle \mathcal{V}}, C_{\scriptscriptstyle 4 \scriptscriptstyle h}$	4	
C_5, C_{5v}, C_{5h}	5	$\left\langle C_{70} ight angle$
C_6, C_{6v}, C_{6h}	6	
D_2, D_{2d}, D_{2h}	4	
D_3,D_{3d},D_{3h}	6	
$D_{\!\scriptscriptstyle 4}, D_{\!\scriptscriptstyle 4d}, D_{\!\scriptscriptstyle 4h}$	8	
D_{6}, D_{6d}, D_{6h}	12	
T_d	12	
O_h	24	
I_h	60	$\left\langle C_{_{60}} ight angle$

Non-rigidity complicates the situation



Ethane if freely rotating
sym # = 18 rather
than 6



expect σ = 1, but if (H₁ and H₂) and (H₃ and H₄) can exchange, σ = 4. What if the two water molecules can exchange?