Chapter 7: classical Statistical Mechanics

So far, we have employed QM and considered
the high T classical limits

Suppose we assume from the beginning that we can
describe the system classically?

We conjecture that J, ~ I"'je_ﬂH(p’q)dpdq

monatomic ideal gas — one atom
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We speculate that
H is the classical n-body
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Assume that one has a monotonic gas
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integrate over momenta
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Z,=le"Tdx...dz, = classical configurational |

We already know that it is a poor approximation to treat

vibration classically

Divide H into classical and quantum parts

H = Hcl + Hquant
q — qcquuant
Q = chQquant
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s now refers to the number of degrees of
freedom treated classically
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JIHe dp,...dq, < avg. energy for a molecule in a system of
[fe?"dp,...dq, independent molecules
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In the special case that
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