Statistical Mechanics

sampling +
averaging

microscopic————> macroscopic

Newton’s eq. Thermodynamics
or
Schrodinger’s eq.

Basic idea

given enough time — system will explore all microscopic states

consistent with constraints
1 N
obs = W;

instantaneous measurements (of course in a real
experiment measurements have a time duration)

* But # of energetically
accessible microstates
can be astronomical.

In computer simulations —
need to sample



(6)=Gu =2 PG, G, =(ve]y)
t 1
ensemble probability of
averaged being in state v

microcanonical ensemble closed isolated
all states with fixed E, N, V system
canonical ensemble closed system
all states of fixed N, V in contact with
E can fluctuate heat bath

(sometimes called NVT)



Ergodic Systems

time average = ensemble average

Isolated system: All microstates (of a given energy) are
equally probable

—> Macroscopic equil. state corresponds to the most random situation

Q(N,V,E)=# states with N, V, and energy
between E and E + OE
N

due to limitations in

relatively insensitive our ability to specify £

to OF

Q( N,V, E)dE = # of states with energy between E
T and E + dE

density of states

(in continuum limit)



1

P = = bability of ic state V
T O(NVE) probability of macroscopic state
S =kg/n Q <— definition of Entropy (kB ~1.38x10 %erg /deg)
consider two subsystems, —> A .
Aand B
total # states = Q,Q; Q, Qg

S =kg/n[Q,Q4 | = kgnQ, + kg INQ,

=S,+S; <«— additive as it should be
A B s A+B

N, Ng N, + Ng

Vo Vg V, +V,

E. B E,+Eg system
Q,Q, < Q, . evolves toward
S, + S;(constr.) S more disorder

A+B



— (ﬁj definition
OE J\v

1 ((%n Q)
= f= =
KgT oE NV

1
=

T ispositive = 2  monotonically increases with E

Canonical ensemble: N, V
heat bath attemp T

Energy can flow between
E; and E,,

Assume E; >>E,

bath so large, its energy levels

are continuous

Bath E,

N, V, E,

Entire system — subsystem
and bath is
microcanonical, i.e., N, V, E




If sub-system in state E,, |E =E;+E, = fixed

probability of observing system in state v oc # states with energy E-E,

P, oc Q(E—E,) =g
d/nQ(E)
T

T

p

PV ce P <« Boltzmann distribution

MQ(E-E,)=/nQ(E)-E +..

Y B =1

-PE, '
e B gE, canc?n.lcal
, Q= Ze =| partition
Y function

P =
Q

P, =Q,(E-E,)/Q4(E)

Taylor series,
assuming E << E

To determine
proportionality const.



(E)=3rE, - 200 --{ 2

sEe”s [-0Q/0B),,  (a&mQ
Y Q wy

A= —iénQ
B Assume for now

S = <T£>+ k/nQ + const

=5,

can ignore

Trace is independent of representation
Don’t have to solve Schrodinger Eq.

Q= Zvle‘ﬂEV = ZV:Me‘ﬂH ‘v> =Tr|e™ |

For macroscopic systems, in general, properties do not depend on ensemble

Q=) e’ => O(E)e”" Switch from sum over states to
v ! over energy levels
_ [T 70O
Q= e’ Q(E)dE
T T Laplace transform
canonical microcanonical holds for large systems

partition funct.



Energy of system fluctuates in canonical ensemble

((6EY)=((E~(E)))=(E*)-(EY

=YPE2—(2PE,)

v

\/<[E_<E>]Z> VKT °Cy 1 for N ~ 1023,
- ’9( J fluctuations

are tiny portion
of total energy




A simple example
Collection of N non-interacting 2-level (E =0 or €) distinguishable particles

N
v=(n,..,ny),n,=00r1 Defines a state with energy D _N;¢
j=1

- - = - - 4+ + + -
+ 4+ - + + - - - 4
0 € 2¢
Q(E,N): N CE=me Chose m objects from
(N —m)!m! N objects
S mQ(E,N) Consider 3 particles

e E =0, 1way
ﬂ: 1 (8€an :l((%nﬁj E = 18, 3 ways,
ke \ OB Jy &l am ), E = 2¢, 3 ways

m(MD~M/nM —M  (Stirling’s approximation)



omQ _ fn(ﬁ—lJ _ pe
om

m 1
N 1+e?
0, T—0
E = Ng_~ d
1+e” \ Ne
2,T—)oo

get exactly same result for
<E>in canonical ensemble




Other ensembles

changes in ensembles <> Legendre transforms of S

Let S=kyMOQ(E,X)

idS = BdE + £dX

mechanical extensive
variables

dS zldE—i-dX
T T

from chpt. 1

kids _ BdE — Bf -dX

B

Be careful about
Chandler's sign
convention here




Suppose both E and X can fluctuate

~[BE, +¢X,]
Ze_(ﬂEv"'ézxv)

_U
I
[1]
|

(X)=Z2PX, :{Lé E}
o(-¢) |,
__ Quick check. For simplicity assume canonical
> kB ZV: PVgnPV ensemble. Plug in expression for P,— can
show that

Gibbs Entropy Equation <E>

S

+k/nQ  which we showed previously.




Grand Canonical Ensemble
E and N can fluctuate

P =g lg &AM
S=—ky > P,[-(nE-BE, + BuN ]

=—Kg | —nE-B(E)+ Bu(N)]

using E—TS + pV =pun from p 24

((8N)")=(N?)=(N)’

=3PN2—(=ZPN, )’



Non-interacting particles occupation of cell i
((8N)")=(N?)=(N)’ n, =0 or1l

- [{nn)-(n){n)] -

n.

S

Assume occupations of cells are uncorrelated, and average
occupations are low

if uncorrelated

low
concentration

can show ,Bp:p:<N—> = |pV =nRT

<ninj>=<ni><nj>

So only the diagonal terms
remain in the sum

ideal gas law



