Statistical Mechanics

sampling + averaging

microscopic -----> macroscopic

Newton's eq.

or

Schrodinger's eq.

Thermodynamics

Basic idea

given enough time – system will explore all microscopic states

consistent with constraints

$$G_{obs} = \frac{1}{N} \sum_{a=1}^{N} G_a$$

instantaneous measurements (of course in a real experiment measurements have a time duration)

- But # of energetically accessible microstates can be astronomical.
- In computer simulations need to sample

$$\langle G \rangle = G_{obs} = \sum_{v} P_{v} G_{v}, \quad G_{v} = \langle v | G | v \rangle$$

$$\uparrow \qquad \qquad \uparrow$$
 ensemble probability of averaged being in state v

microcanonical ensemble all states with fixed *E, N, V*

closed isolated system

canonical ensemble all states of fixed N, V

E can fluctuate

closed system in contact with heat bath

(sometimes called NVT)

Ergodic Systems

time average = ensemble average

Isolated system: All microstates (of a given energy) are equally probable

⇒ Macroscopic equil. state corresponds to the most random situation

$$\Omega(N,V,E)=$$
 # states with N, V, and energy between E and E + δE due to limitations in our ability to specify E to δE

$$\bar{\Omega}(N,V,E)dE = \# \text{ of states with energy between } E$$
 and $E+dE$ density of states (in continuum limit)

$$P_{\nu} = \frac{1}{\Omega(N, V, E)} = \text{probability of macroscopic state } V$$

consider two subsystems, A and B

total # states = $\Omega_A \Omega_B$

$$\begin{split} S &= k_B \ell n \big[\Omega_A \Omega_B \big] = k_B \ell n \Omega_A + k_B \ell n \Omega_B \\ &= S_A + S_B & \longleftarrow \quad \text{addit} \end{split}$$

additive as it should be

	А	В	→	A + B	
•	$N_{\scriptscriptstyle A}$	$N_{\scriptscriptstyle B}$	•	$N_A + N_B$	
	$V_{_A}$	$V_{_B}$		$V_{A}+V_{B}$	
	$E_{\scriptscriptstyle A}$	$E_{\scriptscriptstyle B}$		$E_A + E_B$	
$\Omega_A\Omega_B$			<	$\Omega_{{}_{A+B}}$	
$S_A + S_B(constr.)$			r.) <	S_{A+B}	

system evolves toward more disorder

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{N,V}$$

definition

$$\Rightarrow \beta = \frac{1}{k_B T} = \left(\frac{\partial \ell n \Omega}{\partial E}\right)_{N, V}$$

T is positive $\Rightarrow \Omega$ monotonically increases with E

Canonical ensemble: *N, V* heat bath at temp *T*

Bath E_B N, V, E_V

Energy can flow between E_B and E_V

Assume $E_B >> E_V$ bath so large, its energy levels are continuous

Entire system – subsystem and bath is microcanonical, i.e., N, V, E

If sub-system in state E_V , $E = E_B + E_v = fixed$

$$E = E_B + E_v = fixed$$

probability of observing system in state $v \propto \#$ states with energy E- E_v

$$P_{v} \propto \Omega(E - E_{v}) = e^{\ln[\Omega(E - E_{v})]}$$

$$\ln \Omega(E - E_{v}) = \ln \Omega(E) - E_{v} \frac{d \ln \Omega(E)}{dE} + \dots$$

$$\text{Taylor series, assuming } E_{v} << E$$

$$P_{v} = \Omega_{B} \left(E - E_{v} \right) / \Omega_{tot} \left(E \right)$$

$$P_{v} \propto e^{-\beta E_{v}}$$
 — Boltzmann distribution

$$\sum_{v} P_{v} = 1$$

To determine proportionality const.

$$P_{\scriptscriptstyle
u} = rac{e^{-eta E_{\scriptscriptstyle
u}}}{Q}, \qquad Q = \sum_{\scriptscriptstyle
u} e^{-eta E_{\scriptscriptstyle
u}} = egin{cases} {
m canonical} \ {
m partition} \ {
m function} \end{cases}$$

$$\begin{split} \left\langle E \right\rangle &= \Sigma P_{v} E_{v} = \frac{\Sigma E_{v} e^{-\beta E_{v}}}{\Sigma e^{-\beta E_{v}}} = \frac{\left[-\partial Q / \partial \beta \right]_{N,V}}{Q} = -\left(\frac{\partial \ell n Q}{\partial \beta} \right)_{N,V} \\ A &= -\frac{1}{\beta} \ell n Q \end{split}$$

Assume for now

$$S = \frac{\langle E \rangle}{T} + k \ell n Q + const$$
 can ignore

$$\langle P \rangle = \frac{1}{\beta} \left(\frac{\partial \ell n Q}{\partial V} \right)_{N,T}$$

$$Q = \sum_{v} e^{-\beta E_{v}} = \sum_{v} \left\langle v \middle| e^{-\beta H} \middle| v \right\rangle = Tr \left[e^{-\beta H} \right]$$

Trace is independent of representation Don't have to solve Schrodinger Eq.

For macroscopic systems, in general, properties do not depend on ensemble

$$Q = \sum_{v} e^{-\beta E_{v}} = \sum_{l} \Omega(E_{l}) e^{-\beta E_{l}}$$

$$Q = \int_{0}^{\infty} e^{-\beta E} \overline{\Omega}(E) dE$$

$$\uparrow \qquad \uparrow$$
 canonical microcanonical partition funct.

Switch from sum over states to over energy levels

Laplace transform holds for large systems

Energy of system fluctuates in canonical ensemble

$$\left\langle \left(\delta E \right)^{2} \right\rangle = \left\langle \left(E - \left\langle E \right\rangle \right)^{2} \right\rangle = \left\langle E^{2} \right\rangle - \left\langle E \right\rangle^{2}$$

$$= \sum P_{\nu} E_{\nu}^{2} - \left(\sum P_{\nu} E_{\nu} \right)^{2}$$

$$= \frac{1}{Q} \left(\frac{\partial^{2} Q}{\partial \beta^{2}} \right)_{N,V} - \frac{1}{Q^{2}} \left(\frac{\partial Q}{\partial \beta} \right)_{N,V}^{2}$$

$$= \left[\frac{\partial^{2}}{\partial \beta^{2}} \ell n Q \right]_{N,V} = -\left[\frac{\partial \left\langle E \right\rangle}{\partial \beta} \right]_{N,V}$$

$$\langle E \rangle = -\left(\frac{\partial \ell nQ}{\partial \beta}\right)_{N,V}$$

$$\left\langle \left(\delta E\right)^{2}\right\rangle =k_{B}T^{2}C_{V}$$

$$\frac{\sqrt{\left\langle \left[E - \left\langle E \right\rangle\right]^{2}\right\rangle}}{\left\langle E \right\rangle} = \frac{\sqrt{k_{\beta}T^{2}C_{V}}}{\left\langle E \right\rangle} \sim \mathcal{G}\left(\frac{1}{\sqrt{N}}\right)$$

for $N \sim 10^{23}$, fluctuations are tiny portion of total energy

A simple example

Collection of N non-interacting 2-level (E = 0 or ε) distinguishable particles

$$v = (n_1, ..., n_N), n_j = 0 \text{ or } 1$$
 Defines a state with energy $\sum_{j=1}^{N} n_j \varepsilon$

$$\Omega(E,N) = \frac{N!}{(N-m)!m!}, \quad E = m\varepsilon$$
 Chose *m* objects from *N* objects

$$\frac{S}{k_B} = \ell n \Omega(E, N)$$

$$\frac{S}{k_B} = \ell n \Omega(E, N)$$

$$\beta = \frac{1}{k_B} \left(\frac{\partial \ell n \Omega}{\partial E} \right)_N = \frac{1}{\varepsilon} \left(\frac{\partial \ell n \Omega}{\partial m} \right)_N$$
Consider 3 particles
$$E = 0, 1 \text{ way}$$

$$E = 1\varepsilon, 3 \text{ ways},$$

$$E = 2\varepsilon, 3 \text{ ways}$$

 $E = 2\varepsilon$, 3 ways

$$\ell n \ (M !) \approx M \ell n M - M$$
 (Stirling's approximation)

$$\frac{\partial \ell n\Omega}{\partial m} = \ell n \left(\frac{N}{m} - 1 \right) = \beta \varepsilon$$

$$\frac{m}{N} = \frac{1}{1 + e^{\beta \varepsilon}}$$

$$\frac{N}{m} - 1 = e^{\beta \varepsilon}$$

$$\frac{N}{m} = 1 + e^{\beta \varepsilon}$$

$$E = m\varepsilon, \quad m = E/\varepsilon$$

$$\frac{E/\varepsilon}{N} = \frac{1}{1 + e^{\beta \varepsilon}}$$

$$E = N\varepsilon \frac{1}{1 + e^{\beta\varepsilon}} \qquad \begin{array}{c} 0, \quad T \to 0 \\ \\ \frac{N\varepsilon}{2}, \quad T \to \infty \end{array}$$

get exactly same result for <E> in canonical ensemble

Other ensembles

changes in ensembles ↔ Legendre transforms of S

Let
$$S = k_B \ell n \Omega(E, X)$$
 mechanical extensive variables

$$\frac{1}{k_B}dS = \beta dE + \xi dX$$

$$dS = \frac{1}{T}dE - \frac{f}{T} \cdot dX$$

Be careful about Chandler's sign convention here

$$\frac{1}{k_B}dS = \beta dE - \beta f \cdot dX$$

if
$$\begin{cases} X = N, & \xi = -\beta \mu \\ X = V, & \xi = \beta p \end{cases}$$

etc.

Suppose both *E* and *X* can fluctuate

$$P_{v} = \frac{e^{-[\beta E_{v} + \xi X_{v}]}}{\Xi}, \qquad \Xi = \Sigma e^{-(\beta E_{v} + \xi X_{v})}$$

$$\langle E \rangle = \Sigma P_{v} E_{v} = \left[\frac{\partial}{\partial (-\beta)} \ell n \Xi \right]_{\xi, Y}$$

$$\langle X \rangle = \Sigma P_{v} X_{v} = \left[\frac{\partial}{\partial (-\xi)} \ell n \Xi \right]_{\beta, Y}$$

$$S = -k_B \sum_{v} P_{v} \ell n P_{v}$$

Gibbs Entropy Equation

Quick check. For simplicity assume canonical ensemble. Plug in expression for P_{ν} – can show that

$$S = \frac{\langle E \rangle}{T} + k \ell n Q$$
 which we showed previously.

Grand Canonical Ensemble

E and N can fluctuate

$$P_{v} = \Xi^{-1}e^{-(\beta E_{v} - \beta \mu N_{v})}$$

$$S = -k_{B} \sum_{v} P_{v} \left[-\ell n \Xi - \beta E_{v} + \beta \mu N_{v} \right]$$

$$= -k_{B} \left[-\ell n \Xi - \beta \langle E \rangle + \beta \mu \langle N \rangle \right]$$

$$\ell n \Xi = \frac{S}{k_{B}} - \beta \langle E \rangle + \beta \mu \langle N \rangle$$

$$\ell n \Xi = \beta pV$$

$$\left(\frac{\partial \langle N \rangle}{\partial \beta \mu} \right)_{\beta, V} = \langle (\delta N)^{2} \rangle \ge 0$$

$$-\frac{\partial \langle E \rangle}{\partial \beta} = \langle (\delta E)^{2} \rangle = k_{B} T^{2} C_{v} \ge 0$$

$$-\frac{\partial \langle X \rangle}{\partial \xi} = \langle (\delta X)^{2} \rangle \ge 0$$

using $E - TS + pV = \mu n$ from p 24

$$\langle (\delta N)^{2} \rangle = \langle N^{2} \rangle - \langle N \rangle^{2}$$
$$= \sum P_{\nu} N_{\nu}^{2} - (\sum P_{\nu} N_{\nu})^{2}$$

Non-interacting particles

$$\left\langle \left(\delta N \right)^{2} \right\rangle = \left\langle N^{2} \right\rangle - \left\langle N \right\rangle^{2}$$
$$= \sum_{i,j} \left[\left\langle n_{i} n_{j} \right\rangle - \left\langle n_{i} \right\rangle \left\langle n_{j} \right\rangle \right]$$

occupation of cell i

$$n_i = 0 \text{ or } 1$$

$$N = \sum_{i=1}^{m} n_i$$

Assume occupations of cells are uncorrelated, and average occupations are low

if uncorrelated
$$\langle n_i n_j \rangle = \langle n_i \rangle \langle n_j \rangle$$

$$i \neq j$$

So only the diagonal terms remain in the sum

low

$$\langle n_i \rangle << 1$$

$$\langle n_i^2 \rangle = \langle n_i \rangle = \langle n_1 \rangle$$

$$\langle (\delta N)^2 \rangle = \sum_{i=1}^m \left[\langle n_i^2 \rangle - \langle n_i \rangle^2 \right] = m \langle n_1 \rangle \left(1 - \langle n_1 \rangle \right) \approx m \langle n_1 \rangle = \langle N \rangle$$

can show
$$\beta p = \rho = \frac{\langle N \rangle}{V} \implies \boxed{pV = nRT}$$

ideal gas law