Quantum Statistics (Chapter 10 McQuarrie)

* half integral spin — Fermi-Dirac > electron, proton
* integral spin — Bose-Einstein > deuteron, photon

Composite particles
odd # of fermions — acts as fermion
even # of fermions — acts as a boson
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solve (1) for A, and substitute into (2) and (3)




In general, can’t solve analytically for A

N . . (high T and
If A small, A_E —> classical statistics low densities)

Even if particles are non-interacting, quantum effects cause
deviations from pV = NkT

Weakly degenerate ideal Fermi-Dirac gas
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Counting states for translational problem
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# between g+&4g, such that Ag/s<< 1
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Expand in powers of A and integrate
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Write A =a,+a,0+a,0° +...
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Virial coefficients
reflect deviations away
from ideality

B, is +, thus increases pressure beyond that for an ideal classical gas



A =thermal de Broglie wavelength

guantum effects < as de Broglie A <
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Actually it is A_ that is a measure of quantum effects
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get expansion for i from A = e#/kT
and S from G = uN=E — TS + pV

Of course, above approach only valid if quantum corrections are small



Now consider the strongly degenerate Fermi-Dirac gas

A model for the electrons in a metal

_ e P 1
My = P 1 L aBen)
1+ Ae 7 14" since ¢is essentially continuous
1 . :
f (5) = e = prob. a state is occupied
1
T=0 states with € < /4 are occupied fe)
Uy = U states with & > 1, are unoccupied
0 Uy &
from 1-35
om 3/2
a)(g)dg = 47[(?) V\/gdé‘ (includes factor of 2 for spin)

3/2
N = 47[(2mj V_[O”O Jede =# valence e

h?

_sx(am)” p :h_ztifm(ﬂ)m
"3z ) VTt ° 2ml8z) \Vv




Hy

at T =0, the levels are double occupied
up to 1,

a finite T, the boundary is smeared out
i.e., some electrons are excited leaving “holes”

Even atroom T

f(e)=1 &<
f(e)=0 &> L,

is a good approximation

U, k=T = Fermi T, typically a few thousand degrees



ZPE of FD gas

only a very small fraction of the e are excited, so
contribution to heat capacity is~ 0

equipartition theorem would lead us to expect —K for each electron
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V2 <«— zero-point pressure on the order of (10° atm)

S5,=0 only one way to occupy levelsat T=0K



It can be show that

M~ u, fortemperatures for which a
metal is solid
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weakly degenerate ideal Bose-Einstein gas
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Strongly degenerate ideal Bose-Einstein gas

T < T, condensation into ground state

Behavior seen for C,
He-4 i

To

T

From Wikepedia: A Bose—Einstein condensate (BEC) is a state of matter of a dilute gas of
weakly interacting bosons confined in an external potential and cooled to T near to absolute
zero. Under such conditions, a large fraction of the bosons occupy the lowest quantum state of
the external potential, and quantum effects become apparent on a macroscopic scale. This
state of matter was predicted by Bose and Einstein in 1924-25.

The first such condensate was produced by Cornell and Wieman in 1995 at the Univ. of
Colorado NIST-JILA lab, using a gas of Rb atoms cooled to 170 (nK) [2]. Cornell, Wieman,
and Ketterle (MIT) received the 2001 Nobel Prize in Physics.

Note: the fact that Rb atoms act as bosons is due to interplay of electronic and nuclear spins.
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Ideal gas of photons
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Assume harmonic electromagnetic waves

E(x,t)= sin%(x—ct) = sin(kx — wt)

e=hv=hw, p=hlA=7hk
Consider black-body radiation to be due to standing waves
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Fix at O,L — k= ntr/L
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Can be used to derive the Stephan-Boltzmann law

Can also show that the chemical potential = 0 (follows from the fact
that the number of particles is not conserved)

So could have used the Bose-Einstein formulas with A = 1



Density matrices

All the expressions described above were derived assume there are no
interactions between particles
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M = éz M e, M, = q.m. expectation value of operator M
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The trace is independent of the basis
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Inverse Fourier transform



Z Py ¢ 'e_IBH e;lz Py <Nk

— e [0, oy (5 e

Note we have not

*dp,,...,dp,dr,...dr,dr ,...dr, " included the
i iv symmetry of the

Q= 1 J’ o p 2 P e—ﬂHehz ", dr wavefunction

3N 11°°*~"N . .
h which is why the
Now adopt a strategy due to Kirkwood N!'is missing.
i i
_BHM *Z Py * Tk _pgHC *Z Pic* Tk
e /M el =g et W(py,... N, ) =F(py,...1, f)

= [ W )P \
Contains the

oF QM uantum corrections
% =-H""F It is easier to work with d
this diff.eq.
w=> n'w
| There is a w, term but it
w, =1 does not contribute to Q

4

__ Y B oy Pwuy s L pewyuls 2 (pevuy
W, == {7 VAU = Z[(VU)* +—(pV) U+ —(pVU)}



