Consider a system at equilibrium with S = S(E, X)

e with internal constraint bring reversibly to S’(E, X) Internal
requires work since E = const = heat flow constraint
* now adiabatically isolate the system
e turn off int. constraint S, X
system relaxes to S(E, X) £ 4 i/ >
AS=S-S5">0 accordingto2mlaw, LT /\‘5
equilibrium state is that for which S = global max Fig. 4.1

Consider the system in adjacent figure
What are the final values of E® E®

The final values of E/Y) and E? agre those
maximize S, subjectto E=EY + E® SS SN S S S

Now show there is an energy minimum principle ; EO E®@ 2
assume we start at equilibrium and move // yyy //
energy between the subsystems

Sis a monotonically >
S(E‘l) _AE, X‘”)+S(E‘2> +AE, X(Z)) < S(E‘l) +E®@ XO 4 x<2>) function of E

Thus, thereisan E<EY +E® st . .
E is a global minimum

s(E<1> — AE, x<1>)+s(E<2> +AE, x<2>) - s(E, X® 4 x<2>) of E(S, X, int. constr.)



AE = E(S, X,5Y)—E(S, X,0)
= (0E)s +(52E))s,x +...

(5E)s,x >0 for a small variation with oY =0 variables due to constraint

oY = variation of internal extensive

(AE),, >0, (AS)_, <0 for small variations

away from an equilibrium state

How are T¥, T(?) related
at equilibrium?

consider a small displacement from

E(l) T(l) E(Z) T(2) 8(2)
S(l) 1‘
heat
conductor

(§S)E1X <0

E=E®+E® =const.

SEW =—5E®

S=5945®

1 2 68 @ 1 (
55 =659 +55? =| 2| dEW 4| =
oEY ) oE

)j5Em

E (€]

= {i—i}éEmso

T @ T (2)

equilibrium due to a constraint

Since this must hold for any variation 6™

—~TO _T7® atequilibrium



evolve
Suppose TW #T® > to equilibrium
(not at equilibrium)

1 1
ASY +ASP =AS >0 [E—W}AE(D >0 assuming X is fixed

i TOSTO = AE® < 0

energy flows from hot body to cold body!

for a quasistatic process

C:dQ:TdQlT T dS |
dT dT dT heat capacity

(2] o (2
oT J; oT )

C;, C, are extensive




Legendre transforms

f-dX =—pdV +Zgdn, rev. work
A

M; = chem. pot.
p = syst. pressure  n; =# moles.

dE =TdS — pdV + ) zdn,
i=1

Suppose f = F(%,....X,)

i\ OX;

1/ x

df :i(ﬂj dx, =Zn:/,zidxi
_ i=1
Let g:f—zn:yixi

i=r+1

n

dg =df — > [z0x +xd 4]

i=r+1

dg =) wdx— > xdu <« Legendre transform of f
i=1

i=r+l

construct a natural function of T, V, n

A=E-TS=A(T,V,n) l Helmholtz free energy



Alternate way to define Legendre Transformations

Energy E(S,X) and Entropy S(E,X) representations : extensive parameters are the
independent variables.

One typically measures intensive parameters like T not S. How can one recast the problem
so that Tand P are the independent variables?

Answer: Legendre Transforms
Suppose Y=Y(X)
Slope P=dY/dX Infinite number of curves have the same slope. However if you specify

the slope and Y- intercept (let us call this I) then one can specify the curve in terms of P and
I

X1,Y1 -5P1,11

—  X1,Y1



Y-
X -0

| =Y —PX

Example
1

Y == X?
4

P=dY/dX =X/2= X =2P

| =Y — PX :%XZ—PX :%4P2—2P2:—P2

Therefore
| = —P*?

| is referred to as the Legendre transform of Y. i.e., I=Y[P]



The inverse problem is getting the relation Y=Y(X) from I=I(P)

| =Y —PX,dY =PdX
dl =dY —PdX — XdP =-XdP
- X =dl/dP

Y=Y(X) 1=I(P)

P=dY/dX -X=dI/dP

|=-PX+Y Y=XP+l




E(S,V,N,,N,,....

oE
Tz’&;vww.

A=E[T]=E-TS

dE =TdS — pdV +Zz.dn.
A=E-TS
dA=dE-TdS - SdT

dA=-SdT — pdV + > zdn
=1

A is called the Helmholtz free energy

| =Y - PX

A=E-TS



P VRS
G =E[T, p]
G=E-TS+pV

dG =-SdT +Vdp+ ) zdn,

= E[p]
=E+ pV

H =TdS +Vdp+ ) z4dn,

G is the Gibbs free energy

H is the enthalpy

W, refers to the chemical potential of the it component.
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(S,V,n) = E(S,V,n)
A(T,V,n)
(T’V’n) all adequate to specify H (S, p,n)
(S D n) an equilibrium system P
o G(T, p,n)
(T.p,n) -

(T, S) and (p, V) are conjugate variables

dG =-SdT +Vdp + Zdn.
dH =TdS +Vdp +Zz.dn.
dE =TdS — pdV +Z.dn.
dA=-8dT — pdV +Zxdn.




Maxwell relations

If df = adx + bdy
) ()
oy ), \OX),
Suppose we were interested in
)
av T,n

consider

dA=—SdT —PdV +Zxdn
&5
N ), \aT ),

example of a Maxwell
relation

example:

f =xy
df = 2xydx + x*dy

0
Z(2xy) =2
3@'( Xy ) =2x

0, »
— (X)) =2x
ax( )

natural functionof T, V, n



We already saw that

C, =T (@) Suppose we want to know how C,, changes with volume:
oT ),

(a Cv) T 6(88) T 6(88)
ov ). oV \ aT ), . oT \ oV J;,
! T n L VN

[ A2
=T i(@j =T 0 8
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S=S(T,V,n) oT p‘n_ T hp \OV ), \ 0T/,
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