Oct. 26, 2009
Chem. 2430
Problem Set 1, Nov. 4, 2009, REVISED

Do the following problems from Atkins \& Friedman: 8.3, 8.4, 8.7, 8.8
... plus the following two problems:

1) Symmetry-adapted orbitals in the evaluation of the Hückel model of butadiene. In class we discussed the Hückel model of pi-bonding in linear polyene butadiene. An underlying premise of this model is that we can represent the pi-bonding electronic orbitals of butadiene as a linear combination of 42 pz orbitals, one located on each of the carbon atoms in the molecule. Thus, denoting the 2 pz orbital located on carbon atom j as ϕ_{j} (taken to be unit normalized for convenience), the relevant electronic eigenfunctions are given by $\psi=\sum_{j=1}^{4} c_{j} \phi_{j}$, where the c_{j} are superposition coefficients. They are determined via the appropriate matrix representation of the Schrödinger Eq., i.e.,

$$
\begin{equation*}
H \vec{c}=E \vec{c}, \tag{1}
\end{equation*}
$$

where the matrix element $H_{i j}$ is given formally by $H_{j k}=\int d \vec{r} \phi_{j}(\vec{r}) \hat{H}_{e f f} \phi_{k}(\vec{r})$, with $\hat{H}_{e f f}$ being the effective 1-electron Hückel Hamiltonian operator. In practice, we set $H_{j j}=\alpha$ for $\mathfrak{j}=1-4$, and $H_{j k}=\beta$ for all nearest neighbor pairs j, k (and zero for non-nearest neighbor pairs). Making the further approximation that the ϕ_{j} orbitals are mutually orthogonal (i.e., $\int d \vec{r} \phi_{j} \phi_{k}=0, j \neq k$) generates the equivalent "matrix" Schrödinger Eq. noted above.

Consider the four symmetry-adapted orbitals $\chi_{1}-\chi_{4}$ shown in Fig. 1. (Note: Orbitals χ_{1}, χ_{2} are even under reflection through the plane which bisects the symmetry axis of the molecule, while orbitals χ_{3}, χ_{4} are odd.)
a) Show that these orbitals form an orthonormal set, i.e., $\int d \vec{r} \chi_{j}^{2}=1$ and $\int d \vec{r} \chi_{j} \chi_{k}=0 ; j \neq k$ for $\mathrm{j}=1-4$.
b) Express the Hückel Hamiltonian for butadiene in this symmetry-adapted basis set. That is, let $\psi=\sum_{j=1}^{4} b_{j} \chi_{j}$. Then show that Eq. 1 above is equivalent to $\tilde{H} \vec{b}=E \vec{b}$, with $\tilde{H}_{j k}=\int d \vec{r} \chi_{j} \hat{H}_{\text {eff }} \chi_{k}$,
c) Show in particular that

$$
\tilde{\boldsymbol{H}}=\left[\begin{array}{cccc}
\tilde{H}_{11} & \tilde{H}_{12} & 0 & 0 \tag{2}\\
\tilde{H}_{21} & \tilde{H}_{22} & 0 & 0 \\
0 & 0 & \tilde{H}_{33} & \tilde{H}_{34} \\
0 & 0 & \tilde{H}_{43} & \tilde{H}_{44}
\end{array}\right]
$$

where all non-zero elements are simple linear combinations of α, β. Determine these matrix elements explicitly.
d) Note that the matrix $\tilde{\boldsymbol{H}}$ is block diagonal. This implies that symmetry adapted basis functions of different symmetries do not mix. Thus, you can solve each of the 2×2 matrix problems contained in Eq. 2 separately. Do this! In particular:
i) Show that the 4 energy eigenvalues which emerge from this calculation are identical to those obtained in the standard treatment of butadiene within Hückel theory.
ii) Show that the corresponding 4 energy eigenfunction (pi-bonding molecular orbitals) are identical to those obtained in the standard treatment of butadiene within Hückel theory.

Fig. 1. Symmetry adopted pi-bonding MOs for butadiene.
2) Alternating- $\boldsymbol{\beta}$ periodic conjugated pi-electron systems. In class we discussed the Hückel theory treatment of a cyclical pi-electron system with alternating coupling constants β_{1}, β_{2}. Denote the number of carbon atoms in the ring as N , and take N to be an even integer. The specific example of $\mathrm{N}=6$ is illustrated in Fig. 2. Let us represent the electronic eigenfunctions of this system as $\psi=\sum_{j=1}^{N} c_{j} \phi_{j}$, where ϕ_{j} denotes the normalized 2 pz orbital located on carbon atom j , and the c_{j} are superposition coefficients determined by solving the appropriate matrix Schrödinger Equation.

We showed in class that the eigenvector/eigenvalue equation which determines (a, b) is (see class notes for a full explanation of how these two coefficients enter into the eigenvectors of the Hückel Hamiltonian matrix):

$$
\left[\begin{array}{cc}
0 & \beta_{2} e^{-2 \pi j / N}+\beta_{1} e^{2 \pi i / N} \\
\beta_{2} e^{2 \pi i j / N}+\beta_{1} e^{-2 \pi j j / N} & 0
\end{array}\right]\binom{a}{b}=E^{\prime}\binom{a}{b}
$$

where $E^{\prime}=E-\alpha$. (Here α is the usual diagonal Hückel Hamiltonian matrix element, which is taken to be the same for all carbon atoms in the chain.) For a given value of \mathfrak{j}, this implies the eigenvalue pair:

$$
\begin{equation*}
E_{j}^{\prime}= \pm\left[\beta_{1}^{2}+\beta_{2}^{2}+2 \beta_{1} \beta_{2} \cos (4 \pi j / N)\right]^{1 / 2} \tag{3}
\end{equation*}
$$

Since there are a total of N eigenvectors/values in all, the index j can be taken to run from $j=1,2, \ldots, N / 2$.
a) Consider the special case that $\beta_{1}=\beta_{2}$. Take as a specific example a cyclical chain of length $\mathrm{N}=8$. Calculate numerically the 8 energy eigenvalues implied by Eq. 3 above with $j=1-4$, and show that the same 8 energies are obtained from the "standard" (single β) Hückel model energy eigenvalue formula for a cyclic pi-system, which was given in class (or can be found in the Atkins textbook).
b) In the general case $\beta_{1} \neq \beta_{2}$, we discussed in class that for large N the allowed energy eigenvalues fall into two bands. Deduce the general location of the band edges (in terms of $\left.\alpha, \beta_{1}, \beta_{2}\right)$, and, in particular, determine
i) the band width
ii) the band gap
predicted by this model.

Fig. 2. Alternating coupling (β) model for a cyclic hydrocarbon with $\mathrm{N}=6$ carbon atoms. (View is looking down from top of ring. Each orbital is of 2 pz type.)

