Chapter 2 - Vibrations

$$
\begin{array}{ll}
\text { translation } & - \text { particle in box } \\
\text { rotation } & - \text { rigid rotor } \\
\text { vibration } & - \text { harmonic oscillator }
\end{array}
$$

Diatomic molecule

center of mass coordinates

$$
\sim_{\mathrm{x}} \bigcirc \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \leftarrow \text { reduced mass }
$$

$\begin{aligned} & \text { true potential } \\ & \text { can be written }\end{aligned} V(x)=V\left(x_{e}\right)+\left.\frac{d V}{d x}\right|_{\mathrm{x}_{\mathrm{e}}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{e}}\right)$
for vibration what matters is the separation between the atoms

$$
\begin{aligned}
& +\left.\frac{1}{2} \frac{d^{2} V}{d x^{2}}\right|_{\mathrm{x}_{\mathrm{e}}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{e}}\right)^{2} \\
& +\left.\frac{1}{6} \frac{d^{3} V}{d x^{3}}\right|_{\mathrm{x}_{\mathrm{e}}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{e}}\right)^{3}+\left.\ldots \quad \frac{d V}{d x}\right|_{x=x_{e}}=0
\end{aligned}
$$

choose $\mathrm{V}\left(\mathrm{x}_{\mathrm{e}}\right)$ to be the zero of energy

$$
\begin{aligned}
V(x) & =\frac{1}{2} \frac{d^{2} V}{d x^{2}}\left(x-x_{e}\right)^{2}+\ldots \\
& =\frac{1}{2} k\left(x-x_{e}\right)^{2}+\ldots
\end{aligned}
$$

With a shift of the origin, we can replace $x-x_{e}$ with x
$-\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \psi}{d x^{2}}+\frac{1}{2} k x^{2} \psi=E \psi$
Schrodinger Eq. for 1D harmonic oscillator

Note: $e^{-\frac{1}{2} \alpha x^{2}}$ is a solution

$$
\begin{aligned}
& \frac{d}{d x} e^{-\frac{\alpha}{2} x^{2}}=-\alpha x e^{-\frac{\alpha}{2} x^{2}} \\
& \frac{d}{d x}\left[-\alpha x e^{-\frac{\alpha}{2} x^{2}}\right]=\left(-\alpha+\alpha^{2} x^{2}\right) e^{-\frac{\alpha}{2} x^{2}}
\end{aligned}
$$

Do you see why this solves the equation?
$e^{+\frac{\alpha}{2} x^{2}}$
also solves the differential equation. But we reject it, since it $\rightarrow \infty$ as $x \rightarrow \pm \infty$.

The general form of the wavefuction is

$$
\psi_{n}=N_{n} H_{n}(\alpha x) e^{-\frac{\alpha^{2}}{2} x^{2}}, \quad n=0,1,2, \ldots
$$

Adopting the convention Of the text

$$
\alpha=\left(\frac{k \mu}{\hbar^{2}}\right)^{1 / 4}
$$

$\psi_{0}=\left(\frac{\alpha}{\pi^{1 / 2}}\right)^{1 / 2} e^{-\frac{\alpha^{2}}{2} x^{2}}$
$\psi_{1}=\left(\frac{\alpha}{\pi^{1 / 2}}\right)^{1 / 2} 2 \alpha x e^{-\frac{\alpha^{2}}{2} x^{2}}$
$\psi_{2}=\left(\frac{\alpha}{8 \pi^{1 / 2}}\right)^{1 / 2}\left(4 \alpha^{2} x^{2}-2\right) e^{-\frac{\alpha^{2}}{2} x^{2}}$
$\psi_{3}=\left(\frac{\alpha}{48 \pi^{1 / 2}}\right)^{1 / 2}\left(8 \alpha^{3} x^{3}-12 \alpha x\right) e^{-\frac{\alpha^{2}}{2} x^{2}}$
$\psi_{0}, \psi_{2}, \psi_{4}, \ldots \quad$ even
$\psi_{1}, \psi_{3}, \psi_{5}, \ldots$ odd even function $f(-x)=f(x)$ odd function $f(-x)=-f(x)$
Text: $z=\alpha x$

$$
\begin{array}{ll}
H_{n}(\alpha x): & \begin{array}{l}
\text { Hermite } \\
\text { Polynomials }
\end{array}
\end{array}
$$

Note: Atkins' use of α^{2} instead of α.
$E_{n}=\hbar \sqrt{\frac{\mathrm{k}}{\mu}}\left(n+\frac{1}{2}\right)=\hbar \omega\left(n+\frac{1}{2}\right)=h v\left(n+\frac{1}{2}\right), \quad n=0,1,2, \ldots \quad \omega=\sqrt{\mathrm{k} / \mu}$
quantization due to requiring $\psi \rightarrow 0$ as $\mathrm{x} \rightarrow \pm \infty$

$$
\left\langle E_{K E}\right\rangle=\left\langle E_{P E}\right\rangle=\frac{h v}{2}\left(n+\frac{1}{2}\right)
$$

As n becomes large, there is a high probability of finding the oscillator near the classical turning points

\longleftarrow velocity $\rightarrow 0$
\leftarrow maximum velocity

Classical situation

$$
\langle n| \hat{A}|m\rangle=\int \psi_{n}^{*} \hat{A} \psi_{m} d x
$$

For the harmonic oscillator
$\langle 0| x|0\rangle=0$
$\langle 1| x|1\rangle=0$
$\langle 1 \mid 0\rangle=0$
$\langle 1| x|0\rangle \neq 0$
The integral $\langle n| x|0\rangle$ is the transition moment for going from state ψ_{0} to ψ_{n}.

Follows from the properties of even/odd functions

Transition probability $\propto|\langle n| x| 0\rangle\left.\right|^{2}$

Later, we will see that it is also essential that the dipole moment is changing.

Some useful relations

Orthogonality: $\quad \int_{-\infty}^{\infty} H_{\mathrm{v}}(\mathrm{z}) H_{\mathrm{v}^{\prime}}(\mathrm{z}) e^{-\mathrm{z}^{2}} d z=\delta_{\mathrm{v}, \mathrm{v}^{\prime}}$
Recursion Relation: $\quad H_{\mathrm{v}+1}=2 \mathrm{zH}_{\mathrm{v}}-2 \mathrm{v} H_{\mathrm{v}-1}$

$$
\begin{aligned}
& \langle\mathrm{v}+1| x|\mathrm{v}\rangle=\sqrt{\frac{\hbar}{2 \mu \omega}}\left(\mathrm{v}+\frac{1}{2}\right)^{1 / 2} \\
& \langle\mathrm{v}-1| x|\mathrm{v}\rangle=\sqrt{\frac{\hbar}{2 \mu \omega}} \mathrm{v}^{1 / 2} \\
& \langle\mathrm{v}+1| p_{x}|\mathrm{v}\rangle=i\left(\frac{\hbar \mu \omega}{2}\right)^{1 / 2}\left(\mathrm{v}+\frac{1}{2}\right)^{1 / 2} \\
& \langle\mathrm{v}-1| p_{x}|\mathrm{v}\rangle=-i\left(\frac{\hbar \mu \omega}{2}\right)^{1 / 2} \mathrm{v}^{1 / 2}
\end{aligned}
$$

$$
\left\langle E_{k}\right\rangle=\left\langle E_{p}\right\rangle
$$

This is a consequence of the virial theorem

