Chapter 1

When do we need to use QM?

1) Wavelength $\lambda \approx$ dimensions of the system
2) Energy level spacing >> kT

populations
Degeneracies (two or more levels with the same energy)

Can treat the system classically if energy spectrum \approx continuous

Classical waves $\quad \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} \Psi(x, t)}{\partial t^{2}} \quad$ (wave equation)

$$
\begin{aligned}
& \text { v = } \\
& \text { velocity }
\end{aligned}
$$

$\Psi(x, t)=A \sin (k x-\omega t)$
$k=\frac{2 \pi}{\lambda}=$ wave vector
$\omega=2 \pi v=$ angular freq.

Add two travelling waves of same freq. and amplitude, opposite direction

$$
\begin{aligned}
\Psi & =A[\sin (k x-\omega t)+\sin (k x+\omega t)] \\
& =2 A \sin k x \cos \omega t=\psi(x) \cos \omega t
\end{aligned}
$$

\square
standing wave (fixed nodes)

Complex representation

$$
\Psi=A e^{i\left(k x-\omega t+\phi^{\prime}\right)} \quad \text { Euler: } \quad e^{i \alpha}=\cos \alpha+i \sin \alpha \quad i=\sqrt{-1}
$$

Derivation of the Schrödinger eq.

$$
\begin{gathered}
\frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\partial^{2} \Psi}{\partial t^{2}} \\
\downarrow \\
\frac{d^{2} \psi(x)}{d x^{2}}+\frac{\omega^{2}}{\mathrm{v}^{2}} \psi(x)=0 \\
\downarrow \\
\frac{d^{2} \psi}{d x^{2}}+\frac{4 \pi^{2}}{\lambda^{2}} \psi=0 \\
\downarrow \\
\frac{d^{2} \psi}{d x^{2}}+\frac{4 \pi^{2} p^{2}}{h^{2}} \psi=0 \\
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi
\end{gathered}
$$

time independent S. E.

Substitute:

$$
\Psi(x, t)=\psi(x) \cos \omega t
$$

for classical standing wave

$$
v=v \lambda
$$

Substitute $\quad \lambda=\frac{h}{p}$
Substitute: $\quad \hbar=\frac{h}{2 \pi} \quad$ and

$$
\frac{p^{2}}{2 m}+V(x)=E
$$

time-dependent S. E.

$$
\begin{aligned}
& i \hbar \frac{\partial \Psi}{\partial t}=E \Psi \\
& \Psi(x, t)=\psi(x) e^{-i E t / \hbar}
\end{aligned}
$$

Form of wavefunction for a stationary state

Energy is constant over time.
ψ is a soln. of the time-indep. SE
In QM, all observables are associated with operators

Eigenvalue eq.

$$
z=x+i y, i=\sqrt{ }(-1)
$$

Example of a complex number

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi+V \psi=E \psi
$$

H is the Hamiltonian operator

$$
\text { is } \begin{aligned}
\psi & =A e^{i k x}+B e^{-i k x} \text { an e.f. of } \frac{d}{d x} ? \\
\frac{d}{d x} \psi & =i k A e^{i k x}-i k B e^{-i k x} \neq \text { const. } \psi
\end{aligned}
$$

No

$$
\begin{aligned}
& \text { is it an e.f. of } \frac{d^{2}}{d x^{2}} \text { ? } \\
& \frac{d^{2}}{d x^{2}} \psi=-k^{2} A e^{i k x}-k^{2} B e^{-i k x}=-k^{2}\left[A e^{i k x}+B e^{-i k x}\right]
\end{aligned}
$$

Orthogonality

vector space
$x \cdot y=0$
$x \cdot z=0$
$y \cdot z=0$
where $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are vectors in the x, y, z directions
function space function

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \psi_{i}^{*}(x) \psi_{j}(x) d x=\delta_{i j} \\
& \Rightarrow \quad 1 \quad \mathrm{i}=\mathrm{j} \\
& \neq 0 \quad \mathrm{i} \neq \mathrm{j}
\end{aligned}
$$

The different eigenfunctions of a QM operator are orthogonal (degenerate eigenfunctions are a special case)
If $\quad \int_{-\infty}^{\infty} \psi_{i}^{*} \psi_{i} d x=1$, the functions are normalized

Normalize $\mathrm{a}(\mathrm{a}-\mathrm{x})$ on $0 \leq \mathrm{x} \leq \mathrm{a}$
let $\psi=N a(a-x): \int_{0}^{a} N^{2} a^{2}(a-x)^{2} d x=N^{2} a^{2} \int_{0}^{a}\left(a^{2}-2 a x+x^{2}\right) d x$

$$
=N^{2} a^{2}\left[a^{2} x-a x^{2}+\frac{x^{3}}{3}\right]_{0}^{a}=N^{2} a^{2} \frac{a^{3}}{3}=\frac{N^{2} a^{5}}{3}
$$

set $N^{2} \frac{a^{5}}{3}=1 \Rightarrow N=\sqrt{\frac{3}{a^{5}}}$
$\psi=\sqrt{\frac{3}{a^{5}}} a(a-x) \quad$ is normalized on $0 \leq \mathrm{x} \leq \mathrm{a}$

Orthonormal set of functions: orthogonal and normalized

The EF's of a QM operator form a complete set
\Rightarrow any function in that space can be written in terms of the eigenfunctions
$f(x)=\sum_{n=1}^{\infty} b_{n} \psi_{n}(x)$

1. $f(x) \psi_{m}(x)=\psi_{m}(x) \sum_{n=1}^{\infty} b_{n} \psi_{n}(x)$
2. Integrate over both sides

$$
b_{n}=\int_{-\infty}^{\infty} f(x) \psi_{n}(x) d x
$$

b_{n} is the projection of f onto ψ_{n}

The analogue in vector spaces is: $\boldsymbol{v}=a \boldsymbol{i}+b \boldsymbol{j}+c k$
where $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ are unit vectors in the $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ directions
$\begin{aligned} & \text { Fourier } \\ & \text { series }\end{aligned} f(x)=\frac{1}{2} b_{o}+\sum_{n} b_{n} \cos \frac{n \pi x}{L}+\sum_{n} a_{n} \sin \frac{n \pi x}{L}$
for a function periodic over $-\mathrm{L} \leq \mathrm{x} \leq \mathrm{L}$

Key ideas:

- time independent and time dependent Schrödinger equations
- operators
- eigenvalue equations
- orthogonal functions and complete basis sets

1. State of QM system completely specified by wavefunction $\Psi(x, t)$

$$
P\left(x_{0}, t_{0}\right)=\Psi\left(x_{0}, t_{0}\right) * \Psi\left(x_{0}, t_{0}\right) d x=\left|\Psi\left(x_{0}, t_{0}\right)\right|^{2} d x
$$

probability of finding the particle within dx of x_{0} at time t_{0}

$$
\int_{-\infty}^{\infty}|\Psi(x, t)|^{2} d x=1 \quad \longleftarrow \quad \begin{aligned}
& \text { probability of finding } \\
& \text { the particle somewhere }
\end{aligned}
$$

$\Rightarrow \Psi$ is single valued
Ψ and $\frac{d \Psi}{d x}$ are continuous
Ψ cannot be ∞ over a finite interval

2. Each observable is associated with a QM operator

position: $\quad \hat{x}=x$
momentum: $\quad \hat{p}=\frac{\hbar}{i} \frac{\partial}{\partial x}$

KE:

$$
\hat{E}_{k i n}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}=\frac{\hat{p}^{2}}{2 m}
$$

$$
\hat{E}_{p o t}=V(x)
$$

total E :

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)
$$

angular
momentum:

$$
\hat{l}_{x}=\frac{\hbar}{i}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right)
$$

Dirac bra-ket nomenclature

$$
\langle m| \hat{\Omega}|n\rangle=\int \psi_{m}^{*} \hat{\Omega} \psi_{n} d \tau \quad * \quad \begin{aligned}
& \Rightarrow \text { complex conjugate } \\
& \text { i.e., } \mathrm{i} \rightarrow-\mathrm{i}
\end{aligned}
$$

Definition of a Hermitian operator

$$
\int \psi_{m}^{*} \hat{\Omega} \psi_{n} d \tau=\left\{\int \psi_{n}^{*} \hat{\Omega} \psi_{m} d \tau\right\}^{*}
$$

or

$$
\langle m| \hat{\Omega}|n\rangle=\langle n| \hat{\Omega}|m\rangle^{*}
$$

Quantum mechanical observables correspond to Hermitian operators
Eigenvalues of Hermitian operators are real

Show $\frac{\hbar}{i} \frac{\partial}{\partial x}$ is Hermetian

$$
\begin{aligned}
& \int \psi_{m}^{*} \frac{\hbar}{i} \frac{\partial}{\partial x} \psi_{n} d x \stackrel{?}{=}\left[\int \psi_{n}^{*}\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right) \psi_{m} d x\right]^{*} \\
& \int u d v=u v \mid-\int v d u \quad \text { (Integration by parts) } \\
& \int \psi_{m}^{*} \frac{\hbar}{i} \frac{\partial}{\partial x} \psi_{n} d x=\frac{\hbar}{i} \int \psi_{m}^{*} \frac{\partial}{\partial x} \psi_{n} d x \\
& =\frac{\hbar}{i}\left[\left.\psi_{m}^{*} \psi_{n}\right|_{-\infty} ^{\infty}-\int \psi_{n} \frac{\partial}{\partial x} \psi_{m}^{*} d x\right] \\
& -\frac{\hbar}{i} \int \psi_{n} \frac{\partial}{\partial x} \psi_{m}^{*} d x \\
& \text { But }\left[\int \psi_{n}^{*} \frac{\partial}{\partial x} \psi_{m} d x\right]^{*}=\int \psi_{n} \frac{\partial}{\partial x} \psi_{m}^{*} d x \\
& \left(\frac{\hbar}{i}\right)^{*}=-\frac{\hbar}{i} \\
& \text { A well-behaved wavefunction } \\
& 0 \text { as } x \rightarrow \pm \infty
\end{aligned}
$$

which completes the proof.
3. In a single measurement of an observable associated with Â, only an eigenvalue of Â can be measured.
4. Expectation value: $<\hat{A}\rangle=\frac{\int_{-\infty}^{\infty} \Psi^{*} \hat{A} \Psi d x}{\int_{-\infty}^{\infty} \Psi^{*} \Psi d x} \longleftarrow \quad \begin{aligned} & \text { For } \\ & \text { normalization }\end{aligned}$

Average of the observable A, if many measurements are done
If Ψ is an eigenfunction of \hat{A}, all measurements give the same result

If Ψ is not an eigenfunction of \hat{A}

$$
\Psi=\sum b_{n} \phi_{n}
$$

L
eigenfunctions of \hat{A} with eigenvalues a_{n}
$<\hat{A}\rangle=\sum\left|b_{m}\right|^{2} a_{m}, \quad$ assuming Ψ is normalized
In this case, different measurements give different results

Suppose $\psi(x)=\frac{1}{2} \phi_{1}(x)+\frac{\sqrt{3}}{2} \phi_{2}(x)$, where ϕ_{1}, ϕ_{2} are eigenfunctions of \hat{A}

$$
\hat{A} \phi_{1}=a_{1} \phi_{1}, \quad \hat{A} \phi_{2}=a_{2} \phi_{2}
$$

How frequently do we measure a_{1} ? a_{2} ?
5. The time evolution of a QM system is given by

$$
i \hbar \frac{\partial \Psi}{\partial t}(x, t)=\hat{H} \quad \Psi(x, t)
$$

If ψ is a solution of the time-independent SE

$$
\Psi=\psi(x) e^{-i E t / \hbar}
$$

$\hat{H} \Psi=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+V(x) \Psi=i \hbar \frac{d \Psi}{d t}$
Can we separate x, t

$$
\Psi(x, t)=\psi(x) \theta(t) ?
$$

$$
\begin{gathered}
-\frac{\hbar^{2} \theta}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \theta \psi=i \hbar \psi \frac{d \theta}{d t} \\
-\frac{\hbar^{2}}{2 m} \frac{1}{\psi} \frac{d^{2} \psi}{d x^{2}}+V(x)=i \hbar \frac{1}{\theta} \frac{d \theta}{d t}
\end{gathered}
$$

$$
-\frac{\hbar^{2}}{2 m} \frac{1}{\psi} \frac{d^{2} \psi}{d x^{2}}+V(x)=i \hbar \frac{1}{\theta} \frac{d \theta}{d t}
$$

Left-hand side is independent of t and right-hand side is independent of x

- Both sides must be equal to a constant, E
- Separates into two ordinary differential equations:
(1) $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=E \psi(x)$
which may be written in this form
(2) $)_{i \hbar} \frac{d \theta}{d t}=E \theta$

$$
\Psi(x, t)=\psi(x) e^{-i E t / \hbar}
$$

Simultaneous Observables

The values of two different observables, A and B, can be simultaneously determined (precisely) only if the measurement does not change the state of the system.

$$
\begin{gathered}
a \leftrightarrow \hat{\mathrm{~A}} \quad b \leftrightarrow \hat{B} \\
\hat{B} \hat{A} \psi_{n}(x)=\hat{B} \alpha_{n} \psi_{b}(x), \quad \text { if } \psi_{n} \text { an e.f. of } \hat{A} \quad\left(A \psi_{n}=\alpha_{n} \psi_{n}\right) \\
=\beta_{n} \alpha_{n} \psi_{n}, \quad \text { if } \psi_{n} \text { also an e.f. of } \hat{B} \quad\left(B \psi_{n}=\beta_{n} \psi_{n}\right) \\
\Rightarrow \quad \hat{B} \hat{A} \psi_{n}=\hat{A} \hat{B} \psi_{n} \quad \Rightarrow \begin{array}{cc}
\text { Two operators } \\
\text { commute } \\
\hat{\mathbb{1}}
\end{array} \\
(\hat{A} \hat{B}-\hat{B} \hat{A})=\underbrace{[\underbrace{\hat{A}, \hat{B}}]=0} \begin{array}{c}
\text { commutator } \\
\text { simultaneous } \\
\text { observables }
\end{array}
\end{gathered}
$$

p_{x}, x cannot be known exactly
p_{x}, H cannot be known exactly unless $\mathrm{V}=$ constant)

Uncertainty principle (Heisenberg)

$\Delta p \cdot \Delta x \geq \frac{\hbar}{2}$
$\neq 0$ because \hat{p}_{x} and \hat{x} do not commute
Δp and Δx can be associated with standard deviations

$$
\begin{array}{l|l}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} & \Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}} \\
\delta x=\Delta x \\
\delta p_{x}=\Delta p_{x} \\
\Delta x=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2}}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}
\end{array}
$$

spread in x

In general

If two operators obey

$$
\begin{gathered}
{[\mathrm{A}, \mathrm{~B}]=\mathrm{iC}} \\
\Rightarrow \Delta \mathrm{~A} \Delta \mathrm{~B} \geq \frac{1}{2}|\mathrm{C}| \\
\text { If } \mathrm{A}, \mathrm{~B} \text { commute, } \mathrm{C}=0
\end{gathered}
$$

If Ω does not depend on time, the time evolution of its average is given by

$$
\begin{aligned}
& \frac{d \Omega}{d t}=\frac{i}{\hbar}[H, \Omega] \\
& \text { If }[\mathrm{H}, \Omega]=0, \Omega \text { is called a constant of the motion }
\end{aligned}
$$

$$
\begin{array}{r}
\sum_{s}|s><s|=1 \quad \text { Completeness relation (closure relation) } \\
\quad\langle r| A B|c\rangle=\sum_{s}\langle r| A|s\rangle\langle s| B|C\rangle
\end{array}
$$

$$
\begin{aligned}
& H|\psi>=E| \psi> \\
& H \sum_{n} c_{n}\left|n>=E \sum_{n} c_{n}\right| n>
\end{aligned}
$$

Here we expand the wave function in the basis set $n\rangle$

$$
\sum_{n} c_{n}\langle m| H|n\rangle=\sum E c_{n}\langle m \mid n\rangle
$$

$$
\sum_{n} H_{m n} c_{n}=E c_{m}
$$

$$
\begin{aligned}
& H_{m 1} c_{1}+H_{m 2} c_{2}+\ldots+H_{m n} c_{n}=E c_{m} \\
& \left(\begin{array}{clll}
H_{11} & H_{12} & - & - \\
H_{21} & H_{22} & - & - \\
- & - & - & - \\
H_{n 1} & H_{n 2} & - & -
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
c_{n}
\end{array}\right)=E\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
c_{n}
\end{array}\right)
\end{aligned}
$$

Can we find functions that diagonalize the Hamiltonian matrix

Diagonalizing a 2×2 Hamiltonian

$$
\begin{aligned}
& \left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)\binom{c_{1}}{c_{2}}=E\binom{c_{1}}{c_{2}} \\
& \left(\begin{array}{ll}
H_{11}-E & H_{12} \\
H_{21} & H_{22}-E
\end{array}\right)\binom{c_{1}}{c_{2}}=0
\end{aligned} \begin{aligned}
& \Rightarrow \mathrm{c}_{1}, c_{2}, \text { etc. }=0, \text { trivial solution } \\
& \text { or }
\end{aligned}
$$

$$
\left.\begin{aligned}
& \left|\begin{array}{l}
H_{11}-E H_{12} \\
H_{21} H_{22}-E
\end{array}\right|=0 \Rightarrow \\
& \left(H_{11}-E\right)\left(H_{22}-E\right)-H_{12}^{2}=0
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Assuming } \\
& H_{12}=H_{21}
\end{aligned}
$$

Plug E_{+}into the system of equations $\rightarrow \quad C_{1}^{+}, C_{2}^{+}$

Plug $E_{\text {_ }}$ into the system of equations $\rightarrow \quad C_{1}^{-}, C_{2}^{-}$

Complex numbers

